Simulasi Dinamika Molekuler Senyawa Asam Ferulat dan Turunannya dari Kulit Buah Nanas (Ananas comosus) sebagai Inhibitor Enzim Tirosinase

Taufik Muhammad Fakih, Hilda Aprilia Wisnuwardhani, Mentari Luthfika Dewi, Dwi Syah Fitra Ramadhan, Aulia Fikri Hidayat, Robby Prayitno

Abstrak


Enzim tirosinase merupakan enzim utama pada proses pembentukan pigmen melanin. Penghambatan aktivitas enzim tirosinase secara kompetitif maupun non-kompetitif menjadi kunci utama pengembangan agen pencerah kulit. Asam ferulat merupakan salah satu senyawa antioksidan yang kuat dan mampu melindungi kulit dari dampak buruk sinar UV yang menginduksi stress oksidatif. Penelitian ini bertujuan untuk mengidentifikasi interaksi molekuler antara senyawa asam ferulat dari kulit buah nanas (Ananas comosus) dan turunannya dengan enzim tirosinase menggunakan motode dinamika molekuler. Molekul senyawa uji dimodelkan menggunakan perangkat lunak Quantum ESPRESSO v.6.6. Model terbaik dipilih untuk dilakukan studi interaksi menggunakan perangkat lunak MGLTools 1.5.6 yang dilengkapi dengan AutoDock 4.2. Konformasi terbaik hasil penambatan molekuler kemudian dikonfirmasi stabilitasnya dengan simulasi dinamika molekuler menggunakan perangkat lunak Gromacs 2016.3. Berdasarkan hasil dari penambatan molekuler, senyawa asam iso-ferulat memiliki afinitas yang paling baik, yaitu dengan nilai energi bebas ikatan −25,06 kJ/mol dan memilki ikatan dengan logam seng (Zn) pada sisi aktif enzim tirosinase. Kemudian senyawa tersebut memiki stabilitas interaksi yang baik berdasarkan grafik RMSD, RMSF, Rg, SASA, RDF, dan H-Bond. Dengan demikian, senyawa asam iso-ferulat diprediksi dapat digunakan sebagai kandidat inhibitor kompetitif dan non-kompetitif enzim tirosinase


Kata Kunci


antioksidan; kulit buah nanas; asam ferulat; enzim tirosinase; simulasi dinamika molekuler

Teks Lengkap:

PDF

Referensi


. Ding HY, Chang TS, Shen HC, Tai SSK. Murine tyrosinase Inhibitors from Cynanchum bungei and evaluation of in vitro and in vivo depigmenting activity. Exp Dermatol. 2011;20(9). https://doi.org/10.1111/j.1600-0625.2011.01302.x

. Nicolaidou E, Katsambas AD. Pigmentation disorders: Hyperpigmentation and hypopigmentation. Vol. 32, Clinics in Dermatology. 2014. https://doi.org/10.1016/j.clindermatol.2013.05.026

. Fistarol SK, Itin PH. Disorders of pigmentation. Vol. 8, JDDG - Journal of the German Society of Dermatology. 2010. https://doi.org/10.1111/j.1610-0387.2009.07137.x

. Urasaki MBM. Skin physiological alterations perceived by pregnant women attended at public health services. ACTA Paul Enferm. 2010;23(4). https://doi.org/10.1590/s0103-21002010000400012

. Costa A, Moisés TA, Cordero T, Alves CRT, Marmirori J. Associação de emblica, licorice e belides como alternativa à hidroquinona no tratamento clínico do melasma. An Bras Dermatol. 2010;85(5). https://doi.org/10.1590/s0365-05962010000500003

. Zimmermann Franco DC, De Carvalho GSG, Rocha PR, Da Silva Teixeira R, Da Silva AD, Barbosa Raposo NR. Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules. 2012;17(10). https://doi.org/10.3390/molecules171011816

. Bernard P, Berthon JY. Resveratrol: An original mechanism on tyrosinase inhibition. Int J Cosmet Sci. 2000;22(3). https://doi.org/10.1046/j.1467-2494.2000.00019.x

. Baurin N, Arnoult E, Scior T, Do QT, Bernard P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol. 2002;82(2–3). https://doi.org/10.1016/S0378-8741(02)00174-5

. Adhikari A, Devkota HP, Takano A, Masuda K, Nakane T, Basnet P, et al. Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: In vitro tyrosinase inhibition. Int J Cosmet Sci. 2008;30(5). https://doi.org/10.1111/j.1468-2494.2008.00463.x

. Macrini DJ, Suffredini IB, Varella AD, Younes RN, Ohara MT. Extracts from Amazonian plants have inhibitory activity against tyrosinase: An in vitro evaluation. Brazilian J Pharm Sci. 2009;45(4). https://doi.org/10.1590/S1984-82502009000400015

. Chodurek E, Orchel A, Orchel J, Kurkiewicz S, Gawlik N, Dzierzewicz Z, et al. Evaluation of melanogenesis in A-375 cells in the presence of DMSO and analysis of pyrolytic profile of isolated melanin. Sci World J. 2012;2012. https://doi.org/10.1100/2012/854096

. Lin YS, Chen SH, Huang WJ, Chen CH, Chien MY, Lin SY, et al. Effects of nicotinic acid derivatives on tyrosinase inhibitory and antioxidant activities. In: Food Chemistry. 2012. https://doi.org/10.1016/j.foodchem.2011.12.052

. Lin YS, Chuang M Te, Chen CH, Chien MY, Hou WC. Nicotinic acid hydroxamate downregulated the melanin synthesis and tyrosinase activity through activating the MEK/ERK and AKT/GSK3β signaling pathways. J Agric Food Chem. 2012;60(19). https://doi.org/10.1021/jf301109p

. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, et al. Survey and mechanism of skin depigmenting and lightening agents. Vol. 20, Phytotherapy Research. 2006. https://doi.org/10.1002/ptr.1954

. Naqvi F, - Z, Imran I, Khan Faraz AA, Tabussam T, Sikandar S. A double blind study to compare the efficacy of Aloe vera gel and undecylenoyl phenylalanine 2% for treatment of melisma. Prof Med J. 2020;27(08). https://doi.org/10.29309/tpmj/2020.27.08.4459

. Nigam P. Adverse reactions to cosmetics and methods of testing. Vol. 75, Indian Journal of Dermatology, Venereology and Leprology. 2009. https://doi.org/10.4103/0378-6323.45214

. Sheth VM, Pandya AG. Melasma: A comprehensive update: Part II. Vol. 65, Journal of the American Academy of Dermatology. 2011. https://doi.org/10.1016/j.jaad.2011.06.001

. Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. In: Journal of Investigative Dermatology Symposium Proceedings. 2008. https://doi.org/10.1038/jidsymp.2008.8

. Cerqueira FM, De Medeiros MHG, Augusto O. Antioxidantes dietéticos: Controvérsias e perspectivas. Vol. 30, Quimica Nova. 2007. https://doi.org/10.1590/S0100-40422007000200036

. Zhao Z, Moghadasian MH. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Vol. 109, Food Chemistry. 2008. https://doi.org/10.1016/j.foodchem.2008.02.039

. Mancuso C, Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Vol. 65, Food and Chemical Toxicology. 2014. https://doi.org/10.1016/j.fct.2013.12.024

. Nazaré AC, De Faria CMQG, Chiari BG, Petrônio MS, Regasini LO, Silva DHS, et al. Ethyl ferulate, a component with anti-inflammatory properties for emulsion-based creams. Molecules. 2014;19(6). https://doi.org/10.3390/molecules19068124

. Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, et al. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm. 2000;199(1). https://doi.org/10.1016/S0378-5173(00)00358-6

. Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Vol. 4, Biotechnology Reports. 2014. https://doi.org/10.1016/j.btre.2014.09.002

. Lai X, Wichers HJ, Soler‐Lopez M, Dijkstra BW. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew Chemie. 2017;129(33). https://doi.org/10.1002/ange.201704616

. Karamac M, Koleva L, Kancheva VD, Amarowicz R. The structure-antioxidant activity relationship of ferulates. Molecules. 2017;22(4). https://doi.org/10.3390/molecules22040527

. Kurniawan F, Miura Y, Kartasasmita RE, Mutalib A, Yoshioka N, Tjahjono DH. In silico study, synthesis, and cytotoxic activities of porphyrin derivatives. Pharmaceuticals. 2018;11(1). https://doi.org/10.3390/ph11010008

. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21(39). https://doi.org/10.1088/0953-8984/21/39/395502

. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16(8). https://doi.org/10.1093/bioinformatics/16.8.747

. Ramadhan DSF, Fakih TM, Arfan A. Activity Prediction of Bioactive Compounds Contained in Etlingera elatior Against the SARS-CoV-2 Main Protease: An In Silico Approach. Borneo J Pharm. 2020;3(4). https://doi.org/10.33084/bjop.v3i4.1634

. Anzali S, Barnickel G, Cezanne B, Krug M, Filimonov D, Poroikov V. Discriminating between drugs and nondrugs by prediction of activity spectra for substances (PASS). J Med Chem. 2001;44(15). https://doi.org/10.1021/jm0010670

. Kemmish H, Fasnacht M, Yan L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One. 2017;12(5). https://doi.org/10.1371/journal.pone.0177923

. Hassan NM, Alhossary AA, Mu Y, Kwoh CK. Protein-Ligand Blind Docking Using QuickVina-W with Inter-Process Spatio-Temporal Integration. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-15571-7

. Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; https://doi.org/10.1002/jcc.21256

. Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Vol. 23, Molecules. 2018. https://doi.org/10.3390/molecules23081899

. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7. https://doi.org/10.1038/srep42717

. Man VH, He X, Derreumaux P, Ji B, Xie XQ, Nguyen PH, et al. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ 16-22 Dimer. J Chem Theory Comput. 2019; https://doi.org/10.1021/acs.jctc.8b01107

. Bernardi A, Faller R, Reith D, Kirschner KN. ACPYPE update for nonuniform 1–4 scale factors: Conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX. 2019;10. https://doi.org/10.1016/j.softx.2019.100241

. Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn. 2020; https://doi.org/10.1080/07391102.2020.1775129

. Fakih TM, Arumsari A, Dewi ML, Hazar N, Syarza TM. Identifikasi Mekanisme Molekuler Senyawa Ftalosianina sebagai Kandidat Photosensitizer pada Terapi Fotodinamika secara In Silico. ALCHEMY J Penelit Kim. 2021;17(1). https://doi.org/10.20961/alchemy.17.1.41184.37-42

. Mohammad RK, Madlol RA, Umran NM, Sharrad FI. Structure and electronic properties of substitutionally doped Cycloheptane molecule using DFT. Results Phys. 2016;6. https://doi.org/10.1016/j.rinp.2016.11.039

. Wang LH, Hsu KY, Hsu FL, Lin SJ. Simultaneous determination of caffeic acid, ferulic acid and isoferulic acid in rabbit plasma by high performance liquid chromatography. J Food Drug Anal. 2008;16(1). https://doi.org/10.38212/2224-6614.2382

. Darusman F, Fakih TM. Studi Interaksi Senyawa Turunan Saponin dari Daun Bidara Arab (Ziziphus spina-christi L.) sebagai Antiseptik Alami secara In Silico. J Sains Farm Klin. 2020;7(3). https://doi.org/10.25077/jsfk.7.3.233-239.2020

. Veeraragavan V, Radhakrishnan N, Chidambaram R. Predicting the biodegradability nature of imidazole and its derivatives by modulating two histidine degradation enzymes (urocanase and formiminoglutamase) activities. Asian J Pharm Clin Res. 2017;10(11). https://doi.org/10.22159/ajpcr.2017.v10i11.20999

. Lien CY, Chen CY, Lai ST, Chan CF. Kinetics of mushroom tyrosinase and melanogenesis inhibition by N -acetyl-pentapeptides. Sci World J. 2014;2014. https://doi.org/10.1155/2014/409783

. Huang W-Y, Chen H-J, Lin C-C, Chen C-S, Lin Y-S. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet. J Chem. 2018;2018. https://doi.org/10.1155/2018/2387926

. Chopra N, Kaur D, Chopra G. Nature and Hierarchy of Hydrogen-Bonding Interactions in Binary Complexes of Azoles with Water and Hydrogen Peroxide. ACS Omega. 2018;3(10). https://doi.org/10.1021/acsomega.8b01523

. Norel R, Sheinerman F, Petrey D, Honig B. Electrostatic contributions to protein-protein interactions: Fast energetic filters for docking and their physical basis. Protein Sci. 2008;10(11). https://doi.org/10.1110/ps.12901

. Choi I, Park Y, Ryu IY, Jung HJ, Ullah S, Choi H, et al. In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template. Comput Struct Biotechnol J. 2021;19. https://doi.org/10.1016/j.csbj.2020.12.001

. Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics. 2018;19(1). https://doi.org/10.1186/s12864-018-4506-3

. Pitaloka DAE, Ramadhan DSF, Arfan, Chaidir L, Fakih TM. Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (Inha) inhibitors of mycobacterium tuberculosis. Sci Pharm. 2021;89(2). https://doi.org/10.3390/scipharm89020020

. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, et al. A comprehensive review on tyrosinase inhibitors. Vol. 34, Journal of Enzyme Inhibition and Medicinal Chemistry. 2019. https://doi.org/10.1080/14756366.2018.1545767

. Sk MF, Roy R, Jonniya NA, Poddar S, Kar P. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn. 2021;39(10). https://doi.org/10.1080/07391102.2020.1768149




DOI: https://doi.org/10.25077/jsfk.8.2.208-220.2021

Article Metrics

Abstract view : 762 times
PDF view/download : 476 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.