Review Metode Analisis Warfarin dalam Plasma dengan Berbagai Instrumen

Shofuro Sholihah, Norisca Aliza Putriana, Rimadani Pratiwi

Abstrak


Warfarin merupakan obat antikoagulan oral yang digunakan untuk menangani penyakit terkait dengan tromboembolisme. Warfarin memiliki indeks terapi yang sempit serta memiliki kecenderungan berinteraksi dengan obat maupun herba sehingga membutuhkan pemantauan yang cermat pada efek farmakologi yang ditimbulkan. Penentuan pemberian dosis serta pengamatan efek dari interaksi warfarin dengan obat atau herba salah satunya dapat diketahui dengan menganalisis konsentrasi warfarin dalam plasma darah. Artikel ini merupakan kajian pustaka yang bertujuan untuk memberikan tinjauan mengenai metode yang digunakan untuk menganalisis konsentrasi warfarin dalam plasma darah serta teknik preparasi sampelnya. Metode yang digunakan dalam review artikel ini menggunakan penelusuran melalui basis data PubMed®. Hasil yang didapatkan bahwa metode yang umum digunakan untuk determinasi warfarin dalam plasma darah yakni high-performance liquid chromatography (HPLC) serta ultra-HPLC dengan detektor ultraviolet (UV), fluoresensi (FLD), diode array (DAD), maupun spektroskopi massa (MS). Metode lainnya yaitu spektrofotometri UV/Vis dan spektrofotometri fluoresensi serta elektroforesis. Dari metode tersebut, metode HPLC dengan detektor spektroskopi massa paling banyak digunakan untuk menganalisis warfarin serta teknik preparasi sampel yang umum digunakan yakni preparasi sampel yang umum digunakan yakni presipitasi protein menggunakan asetonitril sebagai protein presipitan serta penambahan asam untuk meningkatkan nilai recovery warfarin dari plasma darah


Teks Lengkap:

PDF

Referensi


. Radwan MA, Bawazeer GA, Aloudah NM, Alquadeib BT, Aboul-Enein HY. Determination of free and total warfarin concentrations in plasma using UPLC MS/MS and its application to a patient samples. Biomed Chromatogr. 2012;26(1):6–11. https://doi.org/10.1002/bmc.1616

. Alnaqeeb M, Mansor KA, Mallah EM, Ghanim BY, Idkaidek N, Qinna NA. Critical pharmacokinetic and pharmacodynamic drug-herb interactions in rats between warfarin and pomegranate peel or guava leaves extracts. BMC Complement Altern Med. 2019;19(1):1–12. https://doi.org/10.1186/s12906-019-2436-5

. Lomonaco T, Ghimenti S, Piga I, Onor M, Melai B, Fuoco R, et al. Determination of total and unbound warfarin and warfarin alcohols in human plasma by high performance liquid chromatography with fluorescence detection. J Chromatogr A. 2013;1314:54–62. https://doi.org/10.1016/j.chroma.2013.08.091

. Chua YA, Abdullah WZ, Gan SH. Development of a high-performance liquid chromatography method for warfarin detection in human plasma. Turkish J Med Sci. 2012;42(5):930–41. https://doi.org/10.3906/sag-1101-1476

. Miura M, Okuyama S, Kato S, Kagaya H, Murata A, Komatsuda A, et al. Simultaneous determination of warfarin and 7-hydroxywarfarin enantiomers by high-performance liquid chromatography with ultraviolet detection. Ther Drug Monit. 2011;33(1):108–14. https://doi.org/10.1097/FTD.0b013e31820176d6

. Ju W, Peng K, Yang S, Sun H, Sampson M, Wang MZ. A chiral HPLC-MS/MS method for simultaneous quantification of warfarin enantiomers and its major hydroxylation metabolites of CYP2C9 and CYP3A4 in human plasma. Austin J Anal Pharm Chem. 2014;1(2):1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26161443%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4494745

. Gholivand MB, Torkashvand M, Yavari E. Electrooxidation behavior of warfarin in Fe3O4 nanoparticles modified carbon paste electrode and its determination in real samples. Mater Sci Eng C. 2015;48:235–42. https://doi.org/10.1016/j.msec.2014.12.003

. Li W, Jian W, Fu Y. Basic Sample Preparation Techniques in LC‐MS Bioanalysis. In: Basic Sample Preparation Techniques in LC‐MS Bioanalysis. 2019. p. 1–30. https://doi.org/10.1002/9781119274315.ch1

. Hadjmohammadi M, Ghambari H. Three-phase hollow fiber liquid phase microextraction of warfarin from human plasma and its determination by high-performance liquid chromatography. J Pharm Biomed Anal. 2012;61:44–9. https://doi.org/10.1016/j.jpba.2011.11.019

. Jensen BP, Chin PKL, Begg EJ. Quantification of total and free concentrations of R- and S-warfarin in human plasma by ultrafiltration and LC-MS/MS. Anal Bioanal Chem. 2011;401(7):2187–93. https://doi.org/10.1007/s00216-011-5303-x

. Gouveia F, Bicker J, Gonçalves J, Alves G, Falcão A, Fortuna A. Liquid chromatographic methods for the determination of direct oral anticoagulant drugs in biological samples: A critical review. Anal Chim Acta. 2019;1076:18–31. https://doi.org/10.1016/j.aca.2019.03.061

. Lv C, Liu C, Liu J, Li Z, Du X, Li Y, et al. The Effect of Compound Danshen Dripping Pills on the Dose and Concentration of Warfarin in Patients with Various Genetic Polymorphisms. Clin Ther. 2019;41(6):1097–109. https://doi.org/10.1016/j.clinthera.2019.04.006

. Mostafa AA-A. Enantiomeric separation and quantitation of warfarin and its metabolites in human plasma by LC-MS/MS. Eur J Chem. 2016;7(3):357–62. https://doi.org/10.5155/eurjchem.7.3.357-362.1470

. Jones DR, Boysen G, Miller GP. Novel multi-mode ultra performance liquid chromatography-tandem mass spectrometry assay for profiling enantiomeric hydroxywarfarins and warfarin in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(15–16):1056–62. https://doi.org/10.1016/j.jchromb.2011.03.022

. Shaik AN, Bohnert T, Williams DA, Gan LL, Leduc BW. Mechanism of Drug-Drug Interactions between Warfarin and Statins. J Pharm Sci. 2016;105(6):1976–86. https://doi.org/10.1016/j.xphs.2016.03.011

. Guo J, Zhang Y, Huo Y, Chang Y, Liu E, Hao J. Monitoring unbound warfarin in drug combination therapy by pharmacokinetics and fluorospectrometry. Chinese Herb Med. 2019;11(1):92–7. https://doi.org/10.1016/j.chmed.2018.10.002

. Li W, Bu F, Li R, Wang B, Shaikh AS, Zhang Y, et al. Bioequivalence Study of Warfarin in Healthy Chinese Volunteers With a Validated High-Performance Liquid Chromatography-Mass Spectrometry Method. Clin Pharmacol Drug Dev. 2018;7(3):256–62. https://doi.org/10.1002/cpdd.348

. Farouk F, Nabhan S, Niessen WMA, Azzazy HME. LC–MS/MS assay for assessing medical adherence in patients under warfarin maintenance therapy. Microchem J. 2018;141:135–40. https://doi.org/10.1016/j.microc.2018.05.002

. Li H, Jiang Y, Wang Y, Lv H, Xie H, Yang G, et al. The Effects of Warfarin on the Pharmacokinetics of Senkyunolide I in a Rat Model of Biliary Drainage After Administration of Chuanxiong. Front Pharmacol. 2018;9:1–13. https://doi.org/10.3389/fphar.2018.01461

. Dong H, Ma J, Li T, Xiao Y, Zheng N, Liu J, et al. Global deregulation of ginseng products may be a safety hazard to warfarin takers: Solid evidence of ginseng-warfarin interaction. Sci Rep. 2017;7(1):1–29. https://doi.org/10.1038/s41598-017-05825-9

. Zayed A, Babaresh WM, Darweesh RS, El-Elimat T. Simultaneous determination of warfarin and 7-hydroxywarfarin in rat plasma by HPLC-FLD. Acta Pharm. 2020;70(3):343–57. https://doi.org/10.2478/acph-2020-0025

. Shi Y, Zhang W, Jiang M, Huang L, Zhou Y, Chen J, et al. Effects of sulfotanshinone sodium injection on the pharmacokinetics and pharmacodynamics of warfarin in rats in vivo. Xenobiotica. 2020;50(6):705–12. https://doi.org/10.1080/00498254.2019.1681034

. Albrecht D, Turakhia MP, Ries D, Marbury T, Smith W, Dillon D, et al. Pharmacokinetics of tecarfarin and warfarin in patients with severe chronic kidney disease. Thromb Haemost. 2017;117(11):2026–33. https://doi.org/10.1160/TH16-10-0815

. Kobayashi S, Ishii K, Yamada Y, Ryu E, Hashizume J, Nose S, et al. Combination index of the concentration and in vivo antagonism activity of racemic warfarin and its metabolites to assess individual drug responses. J Thromb Thrombolysis. 2019;47(3):467–72. https://doi.org/10.1007/s11239-018-1780-5

. Ueng YF, Lu CK, Yang SH, Wang HJ, Huang CC. Potentiation of the anticoagulation effect of warfarin by the herbal remedy Shu-Jing-Hwo-Shiee-Tang in rats: The dosing regimen and pharmacokinetic interaction. Drug Metab Pharmacokinet. 2017;32(1):85–91. https://doi.org/10.1016/j.dmpk.2016.11.010

. Yang MS, Yu CP, Chao PDL, Lin SP, Hou YC. R- and S-Warfarin Were Transported by Breast Cancer Resistance Protein: From In Vitro to Pharmacokinetic-Pharmacodynamic Studies. J Pharm Sci. 2017;106(5):1419–25. https://doi.org/10.1016/j.xphs.2017.01.012

. Noguez JH, Ritchie JC. Quantitation of the oral anticoagulants dabigatran, rivaroxaban, apixaban, and warfarin in plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Methods Mol Biol. 2016;1383:21–7. https://doi.org/10.1007/978-1-4939-3252-8_3

. Kusama T, Toda A, Shimizu M, Uehara S, Inoue T, Uno Y, et al. Association with polymorphic marmoset cytochrome P450 2C19 of in vivo hepatic clearances of chirally separated R-omeprazole and S-warfarin using individual marmoset physiologically based pharmacokinetic models. Xenobiotica. 2018;48(10):1072–7. https://doi.org/10.1080/00498254.2017.1393121

. Nosal DG, Feinstein DL, Chen L, van Breemen RB. Separation and quantification of superwarfarin rodenticide diastereomers⇔Bromadiolone, difenacoum, flocoumafen, brodifacoum, and difethialone—in human plasma. J AOAC Int. 2021;103(3):770–8. https://doi.org/10.1093/jaoacint/qsaa007

. Bedewy AML, Showeta S, Mostafa MH, Kandil LS. The Influence of CYP2C9 and VKORC1 Gene Polymorphisms on the Response to Warfarin in Egyptians. Indian J Hematol Blood Transfus. 2018;34(2):328–36. https://doi.org/10.1007/s12288-016-0725-4

. Ge B, Zhang Z, Lam TT, Zuo Z. Puerarin offsets the anticoagulation effect of warfarin in rats by inducing rCyps, upregulating vitamin K epoxide reductase and inhibiting thrombomodulin. Biopharm Drug Dispos. 2017;38(1):33–49. https://doi.org/10.1002/bdd.2054

. Zhang X, Zhang X, Wang X, Zhao M. Influence of andrographolide on the pharmacokinetics of warfarin in rats. Pharm Biol. 2018;56(1):351–6. https://doi.org/10.1080/13880209.2018.1478431

. Chernonosov A. Quantification of Warfarin in Dried Rat Plasma Spots by High-Performance Liquid Chromatography with Tandem Mass Spectrometry. J Pharm. 2016;2016:1–6. https://doi.org/10.1155/2016/6053295

. Groenendaal-Van De Meent D, Den Adel M, Rijnders S, Krebs-Brown A, Kerbusch V, Golor G, et al. The Hypoxia-inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat (FG-4592) and Warfarin in Healthy Volunteers: A Pharmacokinetic and Pharmacodynamic Drug-Drug Interaction Study. Clin Ther. 2016;38(4):918–28. https://doi.org/10.1016/j.clinthera.2016.02.010

. Shakleya D, Rahman Z, Faustino PJ. Development and validation of an ultra-high-performance liquid chromatography–tandem mass spectrometry method to determine the bioavailability of warfarin and its major metabolite 7-hydroxy warfarin in rats dosed with oral formulations containing differen. Biomed Chromatogr. 2019;33(12):0–2. https://doi.org/10.1002/bmc.4685

. Flora DR, Rettie AE, Brundage RC, Tracy TS. CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites. J Clin Pharmacol. 2017;57(3):382–93. https://doi.org/10.1002/jcph.813

. Lomonaco T, Ghimenti S, Piga I, Biagini D, Onor M, Fuoco R, et al. Monitoring of warfarin therapy: Preliminary results from a longitudinal pilot study. Microchem J. 2018;136:170–6. https://doi.org/10.1016/j.microc.2017.02.010

. Shen C, Huang X, Li J, Zhang P, Li L, Zhang W, et al. Pharmacokinetic and pharmacodynamic interactions of aspirin with warfarin in beagle dogs. Xenobiotica. 2016;46(6):530–41. https://doi.org/10.3109/00498254.2015.1096979

. Desai A, Yamazaki T, Dietz A, Kowalski D, Lademacher C, Pearlman H, et al. Pharmacokinetic and Pharmacodynamic Evaluation of the Drug–Drug Interaction between Isavuconazole and Warfarin in Healthy Subjects. J Chem Inf Model. 2013;53(9):1689–99. https://doi.org/10.1002/cpdd.283.

. Ranjbar bandforuzi S, Hadjmohammadi MR. Solvent bar microextraction using a reverse micelle containing extraction phase for the determination of warfarin from human plasma by high-performance liquid chromatography. J Chromatogr A. 2017;1496:1–8. https://doi.org/10.1016/j.chroma.2017.03.037

. Ye H, Sui D, Liu W, Yuan Y, Ouyang Z, Wei Y. Effects of CYP2C11 gene knockout on the pharmacokinetics and pharmacodynamics of warfarin in rats. Xenobiotica. 2019;49(12):1478–84. https://doi.org/10.1080/00498254.2019.1579006

. Majidi SM, Hadjmohammadi MR. Hydrophobic borneol-based natural deep eutectic solvents as a green extraction media for air-assisted liquid-liquid micro-extraction of warfarin in biological samples. J Chromatogr A. 2020;1621(xxxx):461030. https://doi.org/10.1016/j.chroma.2020.461030

. Zambon CF, Pengo V, Moz S, Bozzato D, Fogar P, Padoan A, et al. Pharmacokinetic and pharmacodynamic re-evaluation of a genetic-guided warfarin trial. Eur J Clin Pharmacol. 2018;74(5):571–82. https://doi.org/10.1007/s00228-018-2422-8

. Shen Z, Lee CA, Wallach K, Valdez S, Wilson DM, Kerr B, et al. Lesinurad: Evaluation of Pharmacokinetic and Pharmacodynamic Interactions With Warfarin in Healthy Volunteers. Clin Pharmacol Drug Dev. 2019;8(5):657–63. https://doi.org/10.1002/cpdd.662

. Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem. 2020;861:113986. https://doi.org/10.1016/j.jelechem.2020.113986

. EMA. International Council of Harmonisation Guideline M10 on Bioanalytical Method Validation. Vol. 44. London; 2019.

. Bruderer S, Okubo K, Mukai H, Mant T, Dingemanse J. Investigation of potential pharmacodynamic and pharmacokinetic interactions between selexipag and warfarin in healthy male subjects. Clin Ther. 2016;38(5):1228-1236.e1. https://doi.org/10.1016/j.clinthera.2016.03.014

. Ungewiss J, Gericke S, Boriss H. Determination of the Plasma Protein Binding of Liraglutide Using the EScalate * Equilibrium Shift Assay. J Pharm Sci. 2019;108(3):1309–14. https://doi.org/10.1016/j.xphs.2018.10.018

. Hu C, Chen X, Zhao Z, Gao D, Gong S, Zhang L, et al. A Two-Sequence, Four-Period, Crossover, Replicate Study to Demonstrate Bioequivalence of Warfarin Sodium Tablet in Healthy Chinese Subjects Under Fasting and Fed Conditions. Clin Pharmacol Drug Dev. 2020;9(4):527–36. https://doi.org/10.1002/cpdd.783

. Ghimenti S, Lomonaco T, Biagini D, Bellagambi FG, Onor M, Trivella MG, et al. Determination of warfarin and warfarin alcohols in dried blood spots by ultra-high performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). Microchem J. 2018;136:247–54. https://doi.org/10.1016/j.microc.2017.03.057

. Sultan MA, Abou El-Alamin MM, Wark AW, Azab MM. Detection and quantification of warfarin in pharmaceutical dosage form and in spiked human plasma using surface enhanced Raman scattering. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2020;228:117533. https://doi.org/10.1016/j.saa.2019.117533

. Xiao R, Wu HL, Hu Y, Yin XL, Gu HW, Liu Z, et al. Simultaneous determination of warfarin and aspirin contents in biological fluids using excitation-emission matrix fluorescence coupled with a second-order calibration method. Anal Sci. 2017;33(1):29–34. https://doi.org/10.2116/analsci.33.29

. Chang YT, Wang ZR, Hsieh MM. Sensitive determination of warfarin and its metabolic enantiomers in body fluids via capillary electrophoresis combined with ultrasound-assisted dispersive liquid-liquid microextraction and online sample stacking. Microchem J. 2019;146:1276–84. https://doi.org/10.1016/j.microc.2019.02.065

. Liu Y, Liu S, Shi Y, Qin M, Sun Z, Liu G. Effects of safflower injection on the pharmacodynamics and pharmacokinetics of warfarin in rats. Xenobiotica. 2018;48(8):818–23. https://doi.org/10.1080/00498254.2017.1361051




DOI: https://doi.org/10.25077/jsfk.8.2.128-144.2021

Article Metrics

Abstract view : 451 times
PDF view/download : 443 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.