Biosintesis ZnO Nanopartikel dari Ekstrak Air Daun Jambu Biji (Psidium guajava L) dan Ion Zn2+ serta Interaksinya dengan Kitosan sebagai Antibakteri Escherichia coli

Ahmad Fatoni, Hilma Hilma, Ade Arinia Rasyad, Selly Novriyanti, Nurlisa Hidayati

Abstrak


Pada penelitian ini telah dilakukan biosintesis ZnO nanopartikel dan kitosan-ZnO nanopartikel sebagai antibakteri Escherichia coli. Tujuan dari penelitian ini adalah modifikasi dan karakterisasi kitosan dengan ZnO nanopartikel dan aplikasinya sebagai antibakteri Escherichia coli. Karakterisasi kitosan-ZnO nanopartikel dilakukan dengan menggunakan spektrofotomer FTIR dan difraksi sinar X (XRD). Difraksi sinar X (XRD) digunakan untuk karakterisasi ZnO nanopartikel. ZnO nanopartikel disintesis melalui reaksi antara ekstrak air daun jambu biji (Psidium guajava L) dengan seng asetat dihidrat. Kitosan-ZnO nanopartikel disintesis melalui reaksi antara kitosan dan ZnO nanopartikel. Metode diffusi agar digunakan untuk meneliti kitosan-ZnO nanopartikel sebagai antibakteri. Hasil penelitian menunjukan bahwa bilangan gelombang pada spektra FTIR kitosan-ZnO nanopartikel muncul pada 3427 cm−1. Ukuran kristal ZnO nanopartikel adalah 16,54 nm. Rata-rata zona inhibisi dari kitosan-ZnO nanopartikel pada konsentrasi 10.000, 5.000 dan 2.500 mg/L berturut-turut adalah 30,57 ± 0,87; 25,97 ± 1,42; dan 23,10 ± 1,61 mm. Semakin tinggi konsentrasi nanopartikel kitosan-ZnO, maka semakin besar pula zona hambatnya.


Kata Kunci


ZnO nanopartikel ; kitosan-ZnO nanopartikel ; biosintesis; Escherichia coli

Teks Lengkap:

PDF

Referensi


Bhatnagar A, Sillanpää M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater — A short review. Adv Colloid Interface Sci. 2009;152(1–2):26–38. https://doi.org/10.1016/j.cis.2009.09.003

Prabaharan M. Bioactivity of Chitosan Derivative. In: Polysaccharides. Cham: Springer International Publishing; 2014. p. 1–14. https://doi.org/10.1007/978-3-319-03751-6_17-1

Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SK, Selvarajan E, Suganthi V, et al. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech. 2014;4(2):167–75. https://doi.org/10.1007/s13205-013-0140-6

Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol. 2004;38(1):43–74. https://doi.org/10.1016/j.seppur.2003.10.004

Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J Mol Liq. 2016;214:175–91. https://doi.org/10.1016/j.molliq.2015.12.013

Kyzas G, Bikiaris D. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Mar Drugs. 2015;13(1):312–37. https://doi.org/10.3390/md13010312

Kandile NG, Nasr AS. Hydrogels based on a three component system with potential for leaching metals. Carbohydr Polym. 2011;85(1):120–8. https://doi.org/10.1016/j.carbpol.2011.02.004

Dai B, Cao M, Fang G, Liu B, Dong X, Pan M, et al. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater. 2012;219–220:103–10. https://doi.org/10.1016/j.jhazmat.2012.03.065

Sathiya SM, Okram GS, Maria Dhivya S, Manivannan G, Jothi Rajan MA. Interaction of Chitosan/Zinc Oxide Nanocomposites and their Antibacterial Activities with Escherichia coli. Mater Today Proc. 2016;3(10):3855–60. https://doi.org/10.1016/j.matpr.2016.11.040

Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016;19:211–6. https://doi.org/10.1016/j.proche.2016.03.095

Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv Nat Sci Nanosci Nanotechnol. 2018;9(1):015008. https://doi.org/10.1088/2043-6254/aaa6f1

Daphedar A, Taranath TC. Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop. Caryologia. 2018;71(2):93–102. https://doi.org/10.1080/00087114.2018.1437980

Vijayakumar S, Mahadevan S, Arulmozhi P, Sriram S, Praseetha PK. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater Sci Semicond Process. 2018;82:39–45. https://doi.org/10.1016/j.mssp.2018.03.017

Dobrucka R, Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci. 2016;23(4):517–23. https://doi.org/10.1016/j.sjbs.2015.05.016

Geetha MS, Nagabhushana H, Shivananjaiah HN. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater Devices. 2016;1(3):301–10. https://doi.org/10.1016/j.jsamd.2016.06.015

Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int. 2012;22(6):693–700. https://doi.org/10.1016/j.pnsc.2012.11.015

Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015;7(3):219–42. https://doi.org/10.1007/s40820-015-0040-x

Ahmad Yusof NA, Mat Zain N, Pauzi N. Synthesis of Chitosan/Zinc Oxide Nanoparticles Stabilized by Chitosan via Microwave Heating. Bull Chem React Eng Catal. 2019;14(2):450. https://doi.org/10.9767/bcrec.14.2.3319.450-458

Li L-H, Deng J-C, Deng H-R, Liu Z-L, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994–8. https://doi.org/10.1016/j.carres.2010.03.019

Salehi R, Arami M, Mahmoodi NM, Bahrami H, Khorramfar S. Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids Surfaces B Biointerfaces. 2010;80(1):86–93. https://doi.org/10.1016/j.colsurfb.2010.05.039

Fatoni A, Munarsih E, Asmadi K, Hidayati N. Synthesis and Characterization Chitosan-ZnO nanoparticle and Its Application as Antibacterial Agent of Staphylococus aureus ATCC 25923. Sci Technol Indones. 2020;5(1):1. https://doi.org/10.26554/sti.2020.5.1.1-5

Motshekga SC, Ray SS, Onyango MS, Momba MNB. Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci. 2015;114:330–9. https://doi.org/10.1016/j.clay.2015.06.010

Barreto MS, Andrade CT, Azero EG, Paschoalin VM, Del Aguila EM. Production of Chitosan/Zinc Oxide Complex by Ultrasonic Treatment with Antibacterial Activity. J Bacteriol Parasitol. 2017;08(05). https://doi.org/10.4172/2155-9597.1000330

AbdElhady MM. Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric. Int J Carbohydr Chem. 2012;2012:1–6. https://doi.org/10.1155/2012/840591

Joseph* L, George M, Singh G, Mathews P. Phytochemical investigation on various parts of Psidium guajava. Ann Plant Sci. 2016;5(02):1265. https://doi.org/10.21746/aps.2016.02.001

Ding P, Huang K-L, Li G-Y, Zeng W-W. Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). J Hazard Mater. 2007;146(1–2):58–64. https://doi.org/10.1016/j.jhazmat.2006.11.061

Pereira FS, Lanfredi S, González ERP, da Silva Agostini DL, Gomes HM, dos Santos Medeiros R. Thermal and morphological study of chitosan metal complexes. J Therm Anal Calorim. 2017;129(1):291–301. https://doi.org/10.1007/s10973-017-6146-2

Kumari S, Rath P, Sri Hari Kumar A, Tiwari TN. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov. 2015;3:77–85. https://doi.org/10.1016/j.eti.2015.01.002

Wang J, Wang H. Preparation of soluble p-aminobenzoyl chitosan ester by Schiff’s base and antibacterial activity of the derivatives. Int J Biol Macromol. 2011;48(3):523–9. https://doi.org/10.1016/j.ijbiomac.2011.01.016

Kandile NG, Razek TMA, Al-Sabagh AM, Khattab MMT. Synthesis and evaluation of some amine compounds having surface active properties as H2S scavenger. Egypt J Pet. 2014;23(3):323–9. https://doi.org/10.1016/j.ejpe.2014.08.008

Mohammed MH, Williams PA, Tverezovskaya O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll. 2013;31(2):166–71. https://doi.org/10.1016/j.foodhyd.2012.10.021

Huang R, Yang B, Liu Q. Removal of chromium(VI) Ions from aqueous solutions with protonated crosslinked chitosan. J Appl Polym Sci. 2013;129(2):908–15. https://doi.org/10.1002/app.38685

Kumar S, Dhar DN, Saxena PN. Applications of metal complexes of Schiff bases-A review. J Sci Ind Res. 2009;68:181–7.

Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012;29(1):48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013

Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater. 2008;9(3):035004. https://doi.org/10.1088/1468-6996/9/3/035004

Sedira S, Ayachi AA, Lakehal S, Fateh M, Achour S. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study. Appl Surf Sci. 2014;311:659–65. https://doi.org/10.1016/j.apsusc.2014.05.132




DOI: https://doi.org/10.25077/jsfk.7.2.151-157.2020

Article Metrics

Abstract view : 727 times
PDF view/download : 327 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.