Pencarian Inhibitor DYRK2 dari Database Bahan Alam Zinc15: Analisis Farmakofor, Simulasi Docking dan Dinamika Molekuler

La Ode Aman, Mangara Sihaloho, Arfan Arfan

Abstrak


DYRK2 (Dual-specificity tyrosine phosphorylation-regulated kinase 2) merupakan protein kinase yang memiliki banyak peranan dalam berbagai proses biologis, termasuk pembelahan sel, proliferasi sel, diferensiasi sel, dan apoptosis. DYRK2 diantaranya terlibat dalam regulasi siklus sel dengan cara mengatur aktivitas proteasom 26S sehingga inhibisi aktivitas DYRK2 dapat menghambat fungsi proteasom 26S dan mengurangi proliferasi sel kanker. Secara in vitro, kurkumin menunjukan kemampuan mengurangi proliferasi sel kanker melalui penghambatan enzim DYRK2. Pada penelitian ini, analog kurkumin telah diskrining dari database bahan alam Zinc15 dengan menggunakan model farmakofor yang diperoleg dengan pendekatan berbasis ligan. Hasil skrining kemudian dievaluasi dengan menerapkan teknik docking molekuler dan dinamika molekuler berdasarkan energi interaksi, rata-rata energi pengikatan bebas dan stabilitas interaksi antara ligan dan situs aktif DYRK2. Skrining terhadap 270.547 molekul dari database bahan alam Zinc15 menghasilkan 110 senyawa hit terpilih. Dengan mempertimbangkan hasil simulasi docking dan dinamika molekuler, tiga analog kurkumin prospektif telah dipilih yaitu ZINC000085597244, ZINC000217945958, dan ZINC000217643970. Molekul-molekul ini memiliki kriteria yang lebih baik dibandingkan kurkumin pada beberapa kriteria, seperti energi interaksi, energi pengikatan bebas, dan stabilitas interaksi dengan target. Disimpulkan, senyawa-senyawa ZINC000085597244, ZINC000217945958, dan ZINC000217643970 diprediksi sebagai kandidat potensial untuk obat anti-kanker dengan mekanisme aksi spesifik terhadap DYRK2.


Kata Kunci


Analog kurkumin, DYRK2, Farmakofor, Docking Molekuler, Dinamika Molekuler.

Teks Lengkap:

PDF

Referensi


M. A. Tomeh, R. Hadianamrei, and X. Zhao, “A review of curcumin and its derivatives as anticancer agents,” Int J Mol Sci, vol. 20, no. 5, 2019, doi: 10.3390/ijms20051033.

E. Chainoglou and D. Hadjipavlou-Litina, “Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets,” https://doi.org/10.1080/17460441.2019.1614560, vol. 14, no. 8, pp. 821–842, Aug. 2019, doi: 10.1080/17460441.2019.1614560.

K. Nagahama, T. Utsumi, T. Kumano, S. Maekawa, N. Oyama, and J. Kawakami, “Discovery of a new function of curcumin which enhances its anticancer therapeutic potency,” Scientific Reports 2016 6:1, vol. 6, no. 1, pp. 1–14, Aug. 2016, doi: 10.1038/srep30962.

A. B. Kunnumakkara et al., “Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases,” Br J Pharmacol, vol. 174, no. 11, p. 1325, 2017, doi: 10.1111/BPH.13621.

S. Banerjee et al., “Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2,” Proceedings of the National Academy of Sciences, vol. 115, no. 32, p. 201806797, 2018, doi: 10.1073/pnas.1806797115.

P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and B. B. Aggarwal, “Curcumin and cancer: An ‘old-age’ disease with an ‘age-old’ solution,” Cancer Lett, vol. 267, no. 1, pp. 133–164, Aug. 2008, doi: 10.1016/J.CANLET.2008.03.025.

A. Vyas, P. Dandawate, S. Padhye, A. Ahmad, and F. Sarkar, “Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties,” Curr Pharm Des, vol. 19, no. 11, p. 2047, Feb. 2013, doi: 10.2174/1381612811319110007.

M. Artico et al., “Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling.,” J Med Chem, vol. 41, no. 21, pp. 3948–60, 1998, doi: 10.1021/jm9707232.

“ZINC.” https://zinc15.docking.org/substances/subsets/natural-products/ (accessed Sep. 27, 2022).

“Decoy Finder 2.0 | Macs in Chemistry.” https://www.macinchem.org/blog/files/82be9fdea59e8e6dd18b7ee06bc027d9-1718.php (accessed Sep. 27, 2022).

“RCSB PDB - 5ZTN: The crystal structure of human DYRK2 in complex with Curcumin.” https://www.rcsb.org/structure/5ztn (accessed Sep. 27, 2022).

“Visualization - BIOVIA - Dassault Systèmes®.” https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/visualization/ (accessed Mar. 05, 2022).

B. Webb and A. Sali, “Comparative Protein Structure Modeling Using MODELLER,” Curr Protoc Bioinformatics, vol. 54, pp. 5.6.1-5.6.37, 2016, doi: 10.1002/CPBI.3.

E. F. Pettersen et al., “UCSF Chimera—A visualization system for exploratory research and analysis,” J Comput Chem, vol. 25, no. 13, pp. 1605–1612, Oct. 2004, doi: 10.1002/JCC.20084.

“mgltools.” https://ccsb.scripps.edu/mgltools/ (accessed Sep. 27, 2022).

D. Schneidman-Duhovny, O. Dror, Y. Inbar, R. Nussinov, and H. J. Wolfson, “Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules.,” J Comput Biol, vol. 15, no. 7, pp. 737–754, 2008, doi: 10.1089/cmb.2007.0130.

D. Schneidman-Duhovny, O. Dror, Y. Inbar, R. Nussinov, and H. J. Wolfson, “PharmaGist: a webserver for ligand-based pharmacophore detection.,” Nucleic Acids Res, vol. 36, no. Web Server issue, pp. 223–228, 2008, doi: 10.1093/nar/gkn187.

C. Empereur-Mot, J. F. Zagury, and M. Montes, “Screening Explorer-An Interactive Tool for the Analysis of Screening Results,” J Chem Inf Model, vol. 56, no. 12, pp. 2281–2286, Dec. 2016, doi: 10.1021/ACS.JCIM.6B00283/SUPPL_FILE/CI6B00283_SI_001.PDF.

The Scripps Research Institute, “AutoDock.” 2016.

B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation,” J Chem Theory Comput, vol. 4, no. 3, pp. 435–447, Mar. 2008, doi: 10.1021/ct700301q.

K. Lindorff-Larsen et al., “Improved side-chain torsion potentials for the Amber ff99SB protein force field,” Proteins, vol. 78, no. 8, pp. 1950–1958, Jun. 2010, doi: 10.1002/PROT.22711.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and testing of a general amber force field,” J Comput Chem, vol. 25, no. 9, pp. 1157–1174, Jul. 2004, doi: 10.1002/JCC.20035.

“AmberTools21.” https://ambermd.org/AmberTools.php (accessed Mar. 05, 2022).

A. W. Sousa Da Silva and W. F. Vranken, “ACPYPE - AnteChamber PYthon Parser interfacE,” BMC Res Notes, vol. 5, no. 1, pp. 1–8, Jul. 2012, doi: 10.1186/1756-0500-5-367/FIGURES/3.

P. Mark and L. Nilsson, “Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K,” Journal of Physical Chemistry A, vol. 105, no. 43, pp. 9954–9960, Nov. 2001, doi: 10.1021/JP003020W.

M. Ylilauri and O. T. Pentikäinen, “MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions,” J Chem Inf Model, vol. 53, no. 10, pp. 2626–2633, Oct. 2013, doi: 10.1021/CI4002475/SUPPL_FILE/CI4002475_SI_002.PDF.

D. Schneidman-Duhovny, O. Dror, Y. Inbar, R. Nussinov, and H. J. Wolfson, “PharmaGist: a webserver for ligand-based pharmacophore detection.,” Nucleic Acids Res, vol. 36, no. Web Server issue, pp. 223–228, 2008, doi: 10.1093/nar/gkn187.

F. Gorunescu, “Data Mining: Concepts, Models and Techniques (Vol.12),” 2013.

X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui, “Molecular Docking: A powerful approach for structure-based drug discovery,” Curr Comput Aided Drug Des, vol. 7, no. 2, p. 146, Nov. 2011, doi: 10.2174/157340911795677602.

N. M. Hassan, A. A. Alhossary, Y. Mu, and C. K. Kwoh, “Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration,” Scientific Reports 2017 7:1, vol. 7, no. 1, pp. 1–13, Nov. 2017, doi: 10.1038/s41598-017-15571-7.

M. S. Valdés-Tresanco, M. E. Valdés-Tresanco, P. A. Valiente, and E. Moreno, “gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS,” J Chem Theory Comput, vol. 17, no. 10, pp. 6281–6291, Oct. 2021, doi: 10.1021/ACS.JCTC.1C00645.

“Protein-Ligand Complex.” http://www.mdtutorials.com/gmx/complex/09_analysis.html (accessed Sep. 28, 2022).

L. Erik, van der David, and H. Berk, “GROMACS.” 2016.




DOI: https://doi.org/10.25077/jsfk.10.1.100-113.2023

Article Metrics

Abstract view : 369 times
PDF view/download : 290 times



JSFK (Jurnal Sains Farmasi & Klinis) (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.