Dendritic-Cell Specific Antigen Hiv-1: Novel Terapi Berbasis Biomolekuler sebagai Imunomodulator pada Penderita HIV Tipe 1

Albert Salim, Maria Pramesthi Sabrina Evananda, Aizar Vesa Prasetyo, I Gusti Made Gde Surya Chandra Trapika

Abstrak


Infeksi Human Immunodeficiency Virus (HIV), baik tipe 1 yang tersebar ke seluruh dunia maupun tipe 2 yang terisolasi di Afrika, masih menjadi tantangan di bidang kesehatan dunia termasuk Indonesia. Angka HIV yang tinggi ini penting untuk ditangani karena bahaya komplikasi yang mengintai. Penatalaksanaan dan terapi HIV yang ada saat ini dengan penggunaan antiretroviral memiliki keterbatasan dilihat dari efek terapi dan efek samping yang ditimbulkan. Pengembangan dan penemuan modalitas terapi yang memiliki potensi efek terapi yang lebih optimal merupakan suatu tantangan yang terus diupayakan dalam penanganan HIV ini. Salah satunya adalah pengembangan imunoterapi berbasis sel dendritik. Literature review ini ditulis secara sistematis mengenai laporan studi terkait hal di atas dari berbagai sumber termasuk Google Scholar, PubMed, Research Gate untuk menguraikan potensi sel dendritik sebagai imunomodulator pada penderita HIV-1. Modalitas imunoterapi ini dikonstruksi dalam bentuk vaksin berbasis sel dendritik, sel yang berperan pada patogenesis HIV, yang diadministrasikan secara intradermal. Vaksin yang diberikan akan menstimulasi respon imun dan dapat digunakan tidak saja sebagai upaya terapi pada penderita tapi berpotensi digunakan sebagai pencegahan.


Kata Kunci


sel dendritik; HIV tipe 1; imunoterapi; vaksin berbasis sel dendritik

Teks Lengkap:

PDF

Referensi


. Melhuish A, Lewthwaite P. Natural history of HIV and AIDS. Medicine (Baltimore). 2018;46(6):356–61. https://doi.org/10.1016/J.MPMED.2018.03.010

. Riono P, Challacombe SJ. HIV in Indonesia and in neighbouring countries and its social impact. Oral Dis. 2020; https://doi.org/10.1111/odi.13560

. Raya HB. Global and National trends of HIV/AIDS. Res Rev Insights. 2018; https://doi.org/10.15761/rri.1000134

. Haryanti T, Wartini. Perception of people living with HIV/AIDS on social stigma of HIV/AIDS in Sukoharjo District. Kesmas. 2019;13(3):132–7. https://doi.org/10.21109/kesmas.v13i3.1752

. Menteri Kesehatan Republik Indonesia. Permenkes No. 21 Tahun 2013 Penanggulangan HIVAIDS. 2013;

. Chawla A, Wang C, Patton C, Murray M, Punekar Y, de Ruiter A, et al. A Review of Long-Term Toxicity of Antiretroviral Treatment Regimens and Implications for an Aging Population [Internet]. Vol. 7, Infectious Diseases and Therapy. Springer Healthcare; 2018. p. 183–95. https://doi.org/10.1007/s40121-018-0201-6

. Schaecher KL. The importance of treatment adherence in HIV. American Journal of Managed Care. 2013.

. Jessica Eno MS P-C. Immunotherapy Through the Years. J Adv Pract Oncol. 2017; https://doi.org/10.6004/jadpro.2017.8.7.8

. Robinson HL. HIV/AIDS Vaccines: 2018. Clin Pharmacol Ther | Vol. 2018;104(6). https://doi.org/10.1002/cpt.1208

. Surenaud M, Montes M, Lindestam Arlehamn CS, Sette A, Banchereau J, Palucka K, et al. Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination. PLoS Pathog. 2019; https://doi.org/10.1371/journal.ppat.1008011

. Norton TD, Zhen A, Tada T, Kim J, Kitchen S, Landau NR. Lentiviral Vector-Based Dendritic Cell Vaccine Suppresses HIV Replication in Humanized Mice. Mol Ther. 2019;27(5):960–73. https://doi.org/10.1016/j.ymthe.2019.03.008

. Maartens G, Celum C, Lewin SR. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. In: The Lancet. 2014. https://doi.org/10.1016/S0140-6736(14)60164-1

. Budiarti R. HIV Infection: Immunopathogenesis and Risk Factor to Fishermen. Ocean Biomed J. 2018; https://doi.org/10.30649/obj.v1i1.4

. Fletcher C V, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014; https://doi.org/10.1073/pnas.1318249111

. Chacko JB, Sankar GRV. Lymphatic targeted drug delivery systems and its application to HIV treatment; a review. International Journal of Pharmaceutical Research. 2020. https://doi.org/10.31838/ijpr/2021.13.01.085

. Smith LK, Babcock IW, Minamide LS, Shaw AE, Bamburg JR, Kuhn TB. Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- And NOX-dependent mechanism. PLoS One. 2021; https://doi.org/10.1371/journal.pone.0248309

. Swanstrom R, Coffin J. HIV-1 pathogenesis: The virus. Cold Spring Harb Perspect Med. 2012; https://doi.org/10.1101/cshperspect.a007443

. Ford N, Meintjes G, Vitoria M, Greene G, Chiller T. The evolving role of CD4 cell counts in HIV care. Current Opinion in HIV and AIDS. 2017. https://doi.org/10.1097/COH.0000000000000348

. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Research. 2017. https://doi.org/10.1038/cr.2016.157

. Gorry PR, Ancuta P. Coreceptors and HIV-1 pathogenesis. Current HIV/AIDS Reports. 2011. https://doi.org/10.1007/s11904-010-0069-x

. Kristoff J, Rinaldo CR, Mailliard RB. Role of dendritic cells in exposing latent HIV-1 for the kill. Viruses. 2019. https://doi.org/10.3390/v12010037

. Mathan TSM, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: From molecules to intercellular communication network. Frontiers in Immunology. 2013. https://doi.org/10.3389/fimmu.2013.00372

. Reizis B. Classical dendritic cells as a unique immune cell lineage. Journal of Experimental Medicine. 2012. https://doi.org/10.1084/jem.20121038

. Marin M, Kushnareva Y, Mason CS, Chanda SK, Melikyan GB. HIV-1 Fusion with CD4+ T cells is promoted by proteins involved in endocytosis and intracellular membrane trafficking. Viruses. 2019; https://doi.org/10.3390/v11020100

. Martín-Moreno A, Muñoz-Fernández MA. Dendritic cells, the double agent in the war against hiv-1. Frontiers in Immunology. 2019. https://doi.org/10.3389/fimmu.2019.02485

. Barroca P, Calado M, Azevedo-Pereira JM. HIV/Dendritic cell interaction: Consequences in the pathogenesis of HIV infection. AIDS Reviews. 2014.

. Smith P, Norgate K, Hegarty E, Gregeda N, Heelas E, Sommerfelt M, et al. Effect of the Modification of p24 Peptide Antigen on Dendritic Cell Uptake and T Cell Activation. Curr HIV Res. 2016; https://doi.org/10.2174/1570162x13666161129115804

. Kastenmüller W, Kastenmüller K, Kurts C, Seder RA. Dendritic cell-targeted vaccines-hope or hype? Nature Reviews Immunology. 2014. https://doi.org/10.1038/nri3727

. Kulkarni V, Rosati M, Valentin A, Ganneru B, Singh AK, Yan J, et al. HIV-1 p24gag Derived Conserved Element DNA Vaccine Increases the Breadth of Immune Response in Mice. PLoS One. 2013; https://doi.org/10.1371/journal.pone.0060245

. Lee C, Lee M, Rhee I. Distinct features of dendritic cell-based immunotherapy as cancer vaccines. Clinical and Experimental Vaccine Research. 2018. https://doi.org/10.7774/cevr.2018.7.1.16

. Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Review of Vaccines. 2015. https://doi.org/10.1586/14760584.2015.1081067

. García F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection. Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine. 2011. https://doi.org/10.1016/j.vaccine.2011.07.043

. Zhao C, Ao Z, Yao X. Current advances in virus-like particles as a vaccination approach against HIV infection. Vaccines. 2016. https://doi.org/10.3390/vaccines4010002

. Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. Immunol Rev. 2013;254(1):170–89. https://doi.org/10.1111/IMR.12082

. S. Waters R, Perry JSA, Han SP, Bielekova B, Gedeon T. The effects of interleukin-2 on immune response regulation. Math Med Biol. 2018; https://doi.org/10.1093/imammb/dqw021

. Macatangay BJC, Riddler SA, Wheeler ND, Spindler J, Lawani M, Hong F, et al. Therapeutic Vaccination with Dendritic Cells Loaded with Autologous HIV Type 1-Infected Apoptotic Cells. J Infect Dis. 2016;213(9):1400–9. https://doi.org/10.1093/infdis/jiv582

. García F, Plana M, Climent N, León A, Gatell JM, Gallart T. Dendritic cell based vaccines for HIV infection: The way ahead. Human Vaccines and Immunotherapeutics. 2013. https://doi.org/10.4161/hv.25876

. Gay CL, Debenedette MA, Tcherepanova IY, Gamble A, Lewis WE, Cope AB, et al. Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated during Acute HIV Infection. AIDS Res Hum Retroviruses. 2018;34(1):111–22. https://doi.org/10.1089/aid.2017.0071

. Da Silva LT, Da Silva WC, De Almeida A, Da Silva Reis D, Santillo BT, Rigato PO, et al. Characterization of monocyte-derived dendritic cells used in immunotherapy for HIV-1-infected individuals. Immunotherapy. 2018;10(10):871–85. https://doi.org/10.2217/imt-2017-0165

. Gay CL, Kuruc JD, Falcinelli SD, Warren JA, Reifeis SA, Kirchherr JL, et al. Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 Infection. Sci Rep. 2020;10(1):1–13. https://doi.org/10.1038/s41598-020-61878-3




DOI: https://doi.org/10.25077/jsfk.8.3.258-263.2021

Article Metrics

Abstract view : 516 times
PDF view/download : 273 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.