Pemilihan Jenis Koformer dan Metode Preparasi dalam Sistem Penghantaran Sediaan Ko-Amorf

Febrina Aulia Dewi, Iyan Sopyan, Taofik Rusdiana

Abstrak


Ko-amorf adalah suatu sistem multikomponen padat yang mengandung zat aktif dan molekul dengan berat molekul rendah lainnya (koformer) yang dapat berupa eksipien atau zat aktif yang relevan secara farmakologis. Formulasi ko-amorf yang dibuat dengan metode preparasi dan jenis koformer yang berbeda dapat menghasilkan perbedaan yang signifikan dalam stabilitas fisik dan profil disolusi suatu bentuk ko-amorf. Tujuan penulisan dari artikel review ini adalah untuk menggali informasi lebih dalam tentang sistem ko-amorf, klasifikasi ko-amorf, karakterisasi ko-amorf serta pengaruh jenis koformer dan metode preparasi ko-amorf terhadap pembentukan ko-amorf. Artikel review ini disusun dengan literature search melalui PubMed, MDPI dan Science Direct dengan memasukkan kata kunci co-amorphous, co-amorphous formulations, co-amorphous stabilizers, co-amorphous drug formulations. Dari review ini ditemukan terdapat beberapa jenis koformer yang dapat digunakan untuk pembentukan ko-amorf yaitu dapat berupa zat aktif yang relevan secara farmakologis dan eksipien seperti diantaranya yaitu asam amino, asam karboksilat, asam tanat, quercetin, sakarin dan nikotinamid. Dan untuk metode preparasi ko-amorf yang dapat digunakan diantaranya yaitu ball milling, cryomilling, melt quenching/ quench cooling, hot melt extrusion, solvent evaporation, spray drying, freeze drying hingga teknologi seperti supercritical antisolvent dan microwave technique. Keberhasilan pembentukan ko-amorf ditentukan diantaranya oleh pemilihan jenis koformer yang melibatkan berbagai sifat yang perlu dipertimbangkan, seperti Tg, potensial ikatan hidrogen, ketercampuran/ miscibility, atau perilaku kristalisasi. Sifat zat aktif dan eksipien seperti stabilitas termal, suhu leleh dan kecenderungan kristalisasi zat aktif dan eksipien, menjadi faktor yang perlu diperhatikan dalam pemilihan metode preparasi ko-amorf.


Kata Kunci


Co-amorphous formulation system; co-amorphous; amorphous; coformer

Teks Lengkap:

PDF

Referensi


Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10(3):98. https://doi.org/10.3390/pharmaceutics10030098

Tănase IM, Sbârcea L, Ledeți A, Vlase G, Barvinschi P, Văruţ RM, et al. Physicochemical characterization and molecular modeling study of host–guest systems of aripiprazole and functionalized cyclodextrins. Journal of Thermal Analysis and Calorimetry. 2020:1-3. https://doi.org/10.1007/s10973-020-09549-3

Ahmed S, Corvis Y, Gahoual R, Euan A, Lai-Kuen R, Couillaud BM, et al. Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery. International journal of pharmaceutics. 2019;567:118488. https://doi.org/10.1016/j.ijpharm.2019.118488

Abdulkarim M, Sharma PK, Gumbleton M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Advanced drug delivery reviews. 2019;142:62-74. https://doi.org/10.1016/j.addr.2019.04.001

Hou G, Wang Z, Ma H, Ji Y, Linwei YU, Xu J, et al. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale. 2019;11(31):14777-84. https://doi.org/10.1039/c9nr05019a

Liang Z, Chen H, Wang C, Sun CC. Discovery, Characterization, and Pharmaceutical Applications of Two Loratadine–Oxalic Acid Cocrystals. Crystals. 2020 Nov;10(11):996. https://doi.org/10.3390/cryst10110996

Jo K, Cho JM, Lee H, Kim EK, Kim HC, Kim H, et al. Enhancement of aqueous solubility and dissolution of celecoxib through phosphatidylcholine-based dispersion systems solidified with adsorbent carriers. Pharmaceutics. 2019;11(1):1. https://doi.org/10.3390/pharmaceutics11010001

Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Advanced drug delivery reviews. 2016;100:85-101. https://doi.org/10.1016/j.addr.2016.01.012

Mehta M, Kothari K, Ragoonanan V, Suryanarayanan R. Effect of water on molecular mobility and physical stability of amorphous pharmaceuticals. Molecular pharmaceutics. 2016;13(4):1339-46. https://doi.org/10.1021/acs.molpharmaceut.5b00950

Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Advanced drug delivery reviews. 2016;100:116-25. https://doi.org/10.1016/j.addr.2015.12.009

Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Co amorphous systems: A product development perspective. International journal of pharmaceutics. 2016;515(1-2):403-15. https://doi.org/10.1016/j.ijpharm.2016.10.043

Sato T, Taylor LS. Acceleration of the crystal growth rate of low molecular weight organic compounds in supercooled liquids in the presence of polyhydroxybutyrate. CrystEngComm. 2017;19(1):80-7. https://doi.org/10.1039/C6CE02177H

Huang C, Powell CT, Sun Y, Cai T, Yu L. Effect of low-concentration polymers on crystal growth in molecular glasses: a controlling role for polymer segmental mobility relative to host dynamics. The Journal of Physical Chemistry B. 2017;121(8):1963-71. https://doi.org/10.1021/acs.jpcb.6b11816

Shi Q, Zhang C, Su Y, Zhang J, Zhou D, Cai T. Acceleration of crystal growth of amorphous griseofulvin by low-concentration poly (ethylene oxide): aspects of crystallization kinetics and molecular mobility. Molecular pharmaceutics. 2017;14(7):2262-72. https://doi.org/10.1021/acs.molpharmaceut.7b00097

Shi Q, Zhang J, Zhang C, Jiang J, Tao J, Zhou D, et al. Selective acceleration of crystal growth of indomethacin polymorphs by low-concentration poly (ethylene oxide). Molecular pharmaceutics. 2017;14(12):4694-704. https://doi.org/10.1021/acs.molpharmaceut.7b00854

Korhonen O, Pajula K, Laitinen R. Rational excipient selection for co-amorphous formulations. Expert opinion on drug delivery. 2017;14(4):551-69. https://doi.org/10.1080/17425247.2016.1198770

Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Molecular pharmaceutics. 2011;8(5):1919-28. https://doi.org/10.1021/mp2002973

Suresh K, Mannava MC, Nangia A. A novel curcumin–artemisinin coamorphous solid: physical properties and pharmacokinetic profile. Rsc Advances. 2014;4(102):58357-61. https://doi.org/10.1039/C4RA11935E

Mizoguchi R, Waraya H, Hirakura Y. Application of co-amorphous technology for improving the physicochemical properties of amorphous formulations. Molecular pharmaceutics. 2019;16(5):2142-52. https://doi.org/10.1021/acs.molpharmaceut.9b00105

Fung M, Be̅rziņš K, Suryanarayanan R. Physical stability and dissolution behavior of ketoconazole–organic acid coamorphous systems. Molecular pharmaceutics. 2018;15(5):1862-9. https://doi.org/10.1021/acs.molpharmaceut.8b00035

Newman A, Reutzel-Edens SM, Zografi G. Coamorphous active pharmaceutical ingredient–small molecule mixtures: considerations in the choice of coformers for enhancing dissolution and oral bioavailability. Journal of pharmaceutical sciences. 2018;107(1):5-17. https://doi.org/10.1016/j.xphs.2017.09.024

Wu W, Grohganz H, Rades T, Löbmann K. Comparison of co-former performance in co-amorphous formulations: Single amino acids, amino acid physical mixtures, amino acid salts and dipeptides as co-formers. European Journal of Pharmaceutical Sciences. 2021;156:105582. https://doi.org/10.1016/j.ejps.2020.105582

Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. European Journal of Pharmaceutics and Biopharmaceutics. 2012;81(1):159-69. https://doi.org/10.1016/j.ejpb.2012.02.004

Dengale SJ, Ranjan OP, Hussen SS, Krishna BS, Musmade PB, Shenoy GG, et al. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. European journal of pharmaceutical sciences. 2014;62:57-64. https://doi.org/10.1016/j.ejps.2014.05.015

Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M. Molecular dynamics and physical stability of coamorphous ezetimib and indapamide mixtures. Molecular pharmaceutics. 2015;12(10):3610-9. https://doi.org/10.1021/acs.molpharmaceut.5b00334

Riekes MK, Engelen A, Appeltans B, Rombaut P, Stulzer HK, Van den Mooter G. New perspectives for fixed dose combinations of poorly water-soluble compounds: a case study with ezetimibe and lovastatin. Pharmaceutical research. 2016;33(5):1259-75. https://doi.org/10.1007/s11095-016-1870-z

Pang W, Lv J, Du S, Wang J, Wang J, Zeng Y. Preparation of curcumin–piperazine coamorphous phase and fluorescence spectroscopic and density functional theory simulation studies on the interaction with bovine serum albumin. Molecular pharmaceutics. 2017;14(9):3013-24. https://doi.org/10.1021/acs.molpharmaceut.7b00217

Martínez-Jiménez C, Cruz-Angeles J, Videa M, Martínez LM. Co-amorphous simvastatin-nifedipine with enhanced solubility for possible use in combination therapy of hypertension and hypercholesterolemia. Molecules. 2018;23(9):2161. https://doi.org/10.3390/molecules23092161

Kissi EO, Khorami K, Rades T. Determination of Stable Co-Amorphous Drug–Drug Ratios from the Eutectic Behavior of Crystalline Physical Mixtures. Pharmaceutics. 2019;11(12):628. https://doi.org/10.3390/pharmaceutics11120628

Lodagekar A, Chavan RB, Mannava MC, Yadav B, Chella N, Nangia AK, et al. Co amorphous valsartan nifedipine system: Preparation, characterization, in vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences. 2019;139:105048. https://doi.org/10.1016/j.ejps.2019.105048

Moinuddin SM, Shi Q, Tao J, Guo M, Zhang J, Xue Q, et al. Enhanced Physical Stability and Synchronized Release of Febuxostat and Indomethacin in Coamorphous Solids. AAPS PharmSciTech. 2020;21(2):1-0. https://doi.org/10.1208/s12249-019-1578-6

Skotnicki M, Jadach B, Skotnicka A, Milanowski B, Tajber L, Pyda M, et al. Physicochemical Characterization of a Co-Amorphous Atorvastatin-Irbesartan System with a Potential Application in Fixed-Dose Combination Therapy. Pharmaceutics. 2021;13(1):118. https://doi.org/10.3390/pharmaceutics13010118

Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B, et al. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: enhanced physical stability, dissolution and pharmacokinetic profile. International journal of pharmaceutics. 2017;532(1):393-400. https://doi.org/10.1016/j.ijpharm.2017.09.020

Meng-Lund H, Kasten G, Jensen KT, Poso A, Pantsar T, Rades T, et al. The use of molecular descriptors in the development of co-amorphous formulations. European Journal of Pharmaceutical Sciences. 2018;119:31-8. https://doi.org/10.1016/j.ejps.2018.04.014

Tilborg A, Norberg B, Wouters J. Pharmaceutical salts and cocrystals involving amino acids: a brief structural overview of the state-of-art. European journal of medicinal chemistry. 2014;74:411-26. https://doi.org/10.1016/j.ejmech.2013.11.045

Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs–Part 1: Preparation, stability and dissolution enhancement. European journal of pharmaceutics and biopharmaceutics. 2013;85(3):873-81. https://doi.org/10.1016/j.ejpb.2013.03.014

Löbmann K, Laitinen R, Strachan C, Rades T, Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs–Part 2: Molecular interactions. European Journal of Pharmaceutics and Biopharmaceutics. 2013;85(3):882-8. https://doi.org/10.1016/j.ejpb.2013.03.026

Ojarinta R, Saarinen J, Strachan CJ, Korhonen O, Laitinen R. Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods. European Journal of Pharmaceutics and Biopharmaceutics. 2018;132:112-26. https://doi.org/10.1016/j.ejpb.2018.09.013

Mishra J, Rades T, Löbmann K, Grohganz H. Influence of solvent composition on the performance of spray-dried co-amorphous formulations. Pharmaceutics. 2018;10(2):47. https://doi.org/10.3390/pharmaceutics10020047

Kasten G, Nouri K, Grohganz H, Rades T, Löbmann K. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. International journal of pharmaceutics. 2017;533(1):138-44. https://doi.org/10.1016/j.ijpharm.2017.09.063

Jensen KT, Löbmann K, Rades T, Grohganz H. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline. Pharmaceutics. 2014;6(3):416-35. https://doi.org/10.3390/pharmaceutics6030416

Kasten G, Grohganz H, Rades T, Löbmann K. Development of a screening method for co-amorphous formulations of drugs and amino acids. European Journal of Pharmaceutical Sciences. 2016;95:28-35. https://doi.org/10.1016/j.ejps.2016.08.022

Kasten G, Löbmann K, Grohganz H, Rades T. Co-former selection for co-amorphous drug-amino acid formulations. International journal of pharmaceutics. 2019;557:366-73. https://doi.org/10.1016/j.ijpharm.2018.12.036

Wang J, Chang R, Zhao Y, Zhang J, Zhang T, Fu Q, et al. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. Aaps Pharmscitech. 2017;18(7):2541-50. https://doi.org/10.1208/s12249-017-0734-0

An JH, Lim C, Kiyonga AN, Chung IH, Lee IK, Mo K, et al. Co-amorphous screening for the solubility enhancement of poorly water-soluble mirabegron and investigation of their intermolecular interactions and dissolution behaviors. Pharmaceutics. 2018;10(3):149. https://doi.org/10.3390/pharmaceutics10030149

Ainurofiq A, Mauludin R, Mudhakir D, Soewandhi SN. A novel desloratadine-benzoic acid co-amorphous solid: Preparation, characterization, and stability evaluation. Pharmaceutics. 2018;10(3):85. https://doi.org/10.3390/pharmaceutics10030085

Shi X, Fan B, Gu C, Zhou X, Wang C, Ding Z. Ibrutinib and carboxylic acid coamorphous system with increased solubility and dissolution: A potential interaction mechanism. Journal of Drug Delivery Science and Technology. 2020;59:101875. https://doi.org/10.1016/j.jddst.2020.101875

Dengale SJ, Hussen SS, Krishna BS, Musmade PB, Shenoy GG, Bhat K. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of Ritonavir with Quercetin. European Journal of Pharmaceutics and Biopharmaceutics. 2015;89:329-38. https://doi.org/10.1016/j.ejpb.2014.12.025

Fael H, Demirel AL. Tannic acid as a co-former in co-amorphous systems: Enhancing their physical stability, solubility and dissolution behavior. International journal of pharmaceutics. 2020;581:119284. https://doi.org/10.1016/j.ijpharm.2020.119284

Shi X, Song S, Ding Z, Fan B, Huang W, Xu T. Improving the solubility, dissolution, and bioavailability of Ibrutinib by preparing it in a Coamorphous state with saccharin. Journal of pharmaceutical sciences. 2019;108(9):3020-8. https://doi.org/10.1016/j.xphs.2019.04.031

Shayanfar A, Ghavimi H, Hamishekar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. Journal of pharmacy & pharmaceutical sciences. 2013;16(4):577-87. https://doi.org/10.18433/J3XS4S

Wu W, Löbmann K, Schnitzkewitz J, Knuhtsen A, Pedersen DS, Grohganz H, et al. Aspartame as a co-former in co-amorphous systems. International journal of pharmaceutics. 2018;549(1-2):380-7. https://doi.org/10.1016/j.ijpharm.2018.07.063

Descamps M, Willart JF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Advanced drug delivery reviews. 2016;100:51-66. https://doi.org/10.1016/j.addr.2016.01.011

Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, et al. Co-amorphous systems for the delivery of poorly water-soluble drugs: Recent advances and an update. Expert Opinion on Drug Delivery. 2020;17(10):1411-35. https://doi.org/10.1080/17425247.2020.1796631

Wickström H, Palo M, Rijckaert K, Kolakovic R, Nyman JO, Määttänen A, et al. Improvement of dissolution rate of indomethacin by inkjet printing. European Journal of Pharmaceutical Sciences. 2015;75:91-100. https://doi.org/10.1016/j.ejps.2015.03.009

Cruz-Angeles J, Videa M, Martínez LM. Highly soluble glimepiride and irbesartan co-amorphous formulation with potential application in combination therapy. AAPS PharmSciTech. 2019;20(4):1-2. https://doi.org/ 10.1208/s12249-019-1359-2

Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. International journal of pharmaceutics. 2013;453(1):233-52. https://doi.org/10.1016/j.ijpharm.2012.11.001

Qi S, McAuley WJ, Yang Z, Tipduangta P. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach. Therapeutic delivery. 2014;5(7):817-41. https://doi.org/10.4155/tde.14.39

Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Advanced drug delivery reviews. 2016;100:27-50. https://doi.org/10.1016/j.addr.2015.12.010

Wu JX, Yang M, van den Berg F, Pajander J, Rades T, Rantanen J. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability. European journal of pharmaceutical sciences. 2011;44(5):610-20. https://doi.org/10.1016/j.ejps.2011.10.008

Beyer A, Radi L, Grohganz H, Löbmann K, Rades T, Leopold CS. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen–indomethacin. European Journal of Pharmaceutics and Biopharmaceutics. 2016;104:72-81. https://doi.org/10.1016/j.ejpb.2016.04.019

Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. International journal of pharmaceutics. 2017;532(1):289-98. https://doi.org/10.1016/j.ijpharm.2017.09.015

Lenz E, Jensen KT, Blaabjerg LI, Knop K, Grohganz H, Löbmann K, et al. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin–arginine. European Journal of Pharmaceutics and Biopharmaceutics. 2015;96:44-52. https://doi.org/10.1016/j.ejpb.2015.07.011

Zhu S, Gao H, Babu S, Garad S. Co-amorphous formation of high-dose zwitterionic compounds with amino acids to improve solubility and enable parenteral delivery. Molecular pharmaceutics. 2018;15(1):97-107. https://doi.org/10.1021/acs.molpharmaceut.7b00738

Abuzar SM, Hyun SM, Kim JH, Park HJ, Kim MS, Park JS, et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. International journal of pharmaceutics. 2018;538(1-2):1-3. https://doi.org/10.1016/j.ijpharm.2017.12.041

Park H, Seo HJ, Hong SH, Ha ES, Lee S, Kim JS, et al. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: Influence of molar ratio and preparation methods. International journal of pharmaceutics. 2020;581:119232. https://doi.org/10.1016/j.ijpharm.2020.119232

Shinde A.; Jadhav N.; Shinde O.; Patil P. Enhancement solubility and dissolution rate of Paracetamol and Ibuprofen by co-amorphous particles using microwave technique. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(11):155-62. http://dx.doi.org/10.22159/ajpcr.2019.v12i11.34589

Huang Y, Zhang Q, Wang JR, Lin KL, Mei X. Amino acids as co-amorphous excipients for tackling the poor aqueous solubility of valsartan. Pharmaceutical development and technology. 2017;22(1):69-76. https://doi.org/10.3109/10837450.2016.1163390

Heng W, Su M, Cheng H, Shen P, Liang S, Zhang L, et al. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Molecular pharmaceutics. 2019;17(1):84-97. https://doi.org/10.1021/acs.molpharmaceut.9b00772

Sterren VB, Aiassa V, Garnero C, Linck YG, Chattah AK, Monti GA, et al. Preparation of chloramphenicol/amino acid combinations exhibiting enhanced dissolution rates and reduced drug-induced oxidative stress. AAPS PharmSciTech. 2017;18(8):2910-8. https://doi.org/10.1208/s12249-017-0775-4

Paudel A, Meeus J, Van den Mooter G. Structural characterization of amorphous solid dispersions. In: Amorphous solid dispersions. New York: Springer; 2014. p. 421-485).

Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Molecular pharmaceutics. 2014;11(1):329-37. https://doi.org/10.1021/mp400498n

Jensen KT, Larsen FH, Cornett C, Löbmann K, Grohganz H, Rades T. Formation mechanism of coamorphous drug–amino acid mixtures. Molecular pharmaceutics. 2015;12(7):2484-92. https://doi.org/10.1021/acs.molpharmaceut.5b00295

Setyawan D, Wardhana NK, Sari R. Solubility, dissolution test and antimalarial activity of artesunate nicotinamide co-crystal prepared by solvent evaporation and slurry methods. Asian J Pharm Clin Res. 2015;8(2):164-6.




DOI: https://doi.org/10.25077/jsfk.8.3.242-257.2021

Article Metrics

Abstract view : 456 times
PDF view/download : 404 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.