Aplikasi Gold Nanopartikel dengan Bahan Alam sebagai Kosmetik Pemutih Wajah: Tinjauan Sistematis

Lisnawati Tiara Putri, Yandi Syukri, Sista Werdyani

Abstrak


Penggunaan bahan alam sebagai pemutih memiliki keuntungan lebih aman meskipun penyerapan dalam kulit relatif rendah. Oleh karenanya, pengembangan nanopartikel emas (AuNPs) bahan alam dapat menjadi solusi permasalahan tersebut. Review ini bertujuan untuk mengumpulkan data terkait pengembangan bahan alam dengan nanopartikel emas yang berkhasiat sebagai agen pemutih. Identifikasi dilakukan dengan mencari literature melalui media pubmed, Science Direct, dan Google Scholar dengan menggunakan kata kunci ‘gold nanoparticle’, ’natural ingredients’, ’ cosmetics’, ‘tyrosinase inhibition’,’ melanin’ dan ’whitening’. Pencarian didasarkan pada kriteria inklusi dan eksklusi yang telah di tetapkan. Hasil evaluasi literatur menunjukkan pengembangan bahan alam sebagai pemutih kulit telah banyak dikembangkan, namun dikarenakan  sifat senyawa aktif sulit terserap menyebabkan hasil yang kurang maksimal dalam menghambat aktivitas tirosinase. Sehingga dilakukan modifikasi dalam bentuk nanopartikel emas untuk mempermudah proses penyerapan. Hasil pengujian aktivitas tirosinase bahan alam dalam bentuk nanopartikel emas lebih baik jika dibandingkan dengan bahan alam dalam bentuk ekstrak. Hal ini ditunjukan dengan nilai IC50 yang semakin kecil jika dibandingkan dengan dengan bahan alam dalam bentuk ekstrak


Kata Kunci


aktivitas enzim tirosinase, bahan alam, nilai IC50

Teks Lengkap:

PDF

Referensi


. Mayaserli DP, Sasmita W. PEMERIKSAAN KADAR MERKURI DAN KELUHAN KESEHATAN DALAM DARAH WANITA PEMAKAI KRIM PEMUTIH DENGAN METODA INDUCTIVELY COUPLED PLASMA. Sainstek J Sains Dan Teknol. 2017;8(2):159. https://doi.org/10.31958/js.v8i2.477

. Parvez S, Kang M, Chung H-S, Cho C, Hong M-C, Shin M-K, et al. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res. 2006;20(11):921–34. https://doi.org/10.1002/ptr.1954

. Kanlayavattanakul M, Lourith N. Therapeutic agents and herbs in topical application for acne treatment. Int J Cosmet Sci. 2011;9. https://doi.org/10.1111/j.1468-2494.2011.00647.x.

. Mohammadinejad R, Karimi S, Iravani S, Varma RS. Plant-derived nanostructures: types and applications. Green Chem. 2016;18(1):20–52. https://doi.org/10.1039/C5GC01403D

. Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng. 2012;1(2):123–8. https://doi.org/10.1016/j.coche.2011.12.002

. Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances. J Pharm. 2018;2018:1–19. https://doi.org/10.1155/2018/3420204

. Zhang X-F, Shen W, Gurunathan S. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli. Molecules. 2016;21(6):731. https://doi.org/10.3390/molecules21060731

. Kanlayavattanakul M, Lourith N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J Cosmet Laser Ther. 2018;20(2):123–31. https://doi.org/10.1080/14764172.2017.1368666

. Wang Z, Wang D, Liu L, Guo D, Yu B, Zhang B, et al. Alteronol inhibits the invasion and metastasis of B16F10 and B16F1 melanoma cells in vitro and in vivo. Life Sci. 2014;98(1):31–8. https://doi.org/10.1016/j.lfs.2013.12.213

. Mieremet A, Vázquez García A, Boiten W, van Dijk R, Gooris G, Bouwstra JA, et al. Human skin equivalents cultured under hypoxia display enhanced epidermal morphogenesis and lipid barrier formation. Sci Rep. 2019;9(1):7811. https://doi.org/10.1038/s41598-019-44204-4

. Park J, Boo YC. Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase. Evid Based Complement Alternat Med. 2013;2013:1–11. https://doi.org/10.1155/2013/645257

. Choi T-Y, Kim J-H, Ko DH, Kim C-H, Hwang J-S, Ahn S, et al. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Res. 2007;20(2):120–7. https://doi.org/10.1111/j.1600-0749.2007.00365.x

. Lajis A. A Zebrafish Embryo as an Animal Model for the Treatment of Hyperpigmentation in Cosmetic Dermatology Medicine. Medicina (Mex). 2018;54(3):35. https://doi.org/10.3390/medicina54030035

. Riding RL, Richmond JM, Harris JE. Mouse Model for Human Vitiligo. Curr Protoc Immunol. 2019;124(1):e63. https://doi.org/10.1002/cpim.63

. Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int J Toxicol. 2019;38(5):357–84. https://doi.org/10.1177/1091581819863130

. Fanord F, Fairbairn K, Kim H, Garces A, Bhethanabotla V, Gupta VK. Bisphosphonate-modified gold nanoparticles: a useful vehicle to study the treatment of osteonecrosis of the femoral head. Nanotechnology. 2011;22(3):035102. https://doi.org/10.1088/0957-4484/22/3/035102

. Yum K, Wang N, Yu M-F. Nanoneedle: A multifunctional tool for biological studies in living cells. Nanoscale. 2010;2(3):363–72. https://doi.org/10.1039/B9NR00231F

. Katz LM, Dewan K, Bronaugh RL. Nanotechnology in cosmetics. Food Chem Toxicol. 2015;85:127–37. https://doi.org/10.1016/j.fct.2015.06.020

. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study. Toxicol Sci. 2011;123(1):264–80. https://doi.org/10.1093/toxsci/kfr148

. Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO2 Particles. Toxicol Sci. 2010;115(1):156–66. https://doi.org/10.1093/toxsci/kfq041

. Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11(1):11. https://doi.org/10.1186/1743-8977-11-11

. Pem B, Pongrac IM, Ulm L, Pavičić I, Vrček V, Domazet Jurašin D, et al. Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione. Beilstein J Nanotechnol. 2019;10:1802–17. https://doi.org/10.3762/bjnano.10.175

. Wang Y, Newell BB, Irudayaraj J. Folic Acid Protected Silver Nanocarriers for Targeted Drug Delivery. J Biomed Nanotechnol. 2012;8(5):751–9. https://doi.org/10.1166/jbn.2012.1437

. Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, et al. Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans. Environ Sci Technol. 2012;46(2):1119–27. https://doi.org/10.1021/es202417t

. Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front Chem. 2020;8:376. https://doi.org/10.3389/fchem.2020.00376

. Basavegowda N, Idhayadhulla A, L

ee YR. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Mater Sci Eng C. 2014;43:58–64. https://doi.org/10.1016/j.msec.2014.06.043

. Jiménez Pérez ZE, Mathiyalagan R, Markus J, Kim Y-J, Kang HM, Abbai R, et al. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int J Nanomedicine. 2017;Volume 12:709–23. https://doi.org/10.2147/IJN.S118373

. Tettey CO, Nagajyothi PC, Lee SE, Ocloo A, Minh An TN, Sreekanth TVM, et al. Anti-melanoma, tyrosinase inhibitory and anti-microbial activities of gold nanoparticles synthesized from aqueous leaf extracts of Teraxacum officinale: AuNPs: effect on cytotoxicity. Int J Cosmet Sci. 2012;34(2):150–4. https://doi.org/10.1111/j.1468-2494.2011.00694.x

. Seo G-Y, Ha Y, Park A-H, Kwon O, Kim Y-J. Leathesia difformis Extract Inhibits α-MSH-Induced Melanogenesis in B16F10 Cells via Down-Regulation of CREB Signaling Pathway. Int J Mol Sci. 2019;20(3):536. https://doi.org/10.3390/ijms20030536

. Jin Y-J, Lin C-C, Lu T-M, Li J-H, Chen I-S, Kuo Y-H, et al. Chemical constituents derived from Artocarpus xanthocarpus as inhibitors of melanin biosynthesis. Phytochemistry. 2015;117:424–35. https://doi.org/10.1016/j.phytochem.2015.07.003

. Yamada M, Nakamura K, Watabe T, Ohno O, Kawagoshi M, Maru N, et al. Melanin Biosynthesis Inhibitors from Tarragon Artemisia dracunculus. Biosci Biotechnol Biochem. 2011;75(8):1628–30. https://doi.org/10.1271/bbb.110306

. Germanò MP, Cacciola F, Donato P, Dugo P, Certo G, D’Angelo V, et al. Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia. 2012;83(5):877–82. https://doi.org/10.1016/j.fitote.2012.03.021

. Chen Y-S, Lee S-M, Lin C-C, Liu C-Y, Wu M-C, Shi W-L. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J Biosci Bioeng. 2013;115(3):242–5. https://doi.org/10.1016/j.jbiosc.2012.09.013

. Mustapha N, Bzéouich IM, Ghedira K, Hennebelle T, Chekir-Ghedira L. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis. Biomed Pharmacother. 2015;69:139–44. https://doi.org/10.1016/j.biopha.2014.11.010

. Mulholland DA, Mwangi EM, Dlova NC, Plant N, Crouch NR, Coombes PH. Non-toxic melanin production inhibitors from Garcinia livingstonei (Clusiaceae). J Ethnopharmacol. 2013;149(2):570–5. https://doi.org/10.1016/j.jep.2013.07.023

. Kanlayavattanakul M, Ospondpant D, Ruktanonchai U, Lourith N. Biological activity assessment and phenolic compounds characterization from the fruit pericarp of Litchi chinensis for cosmetic applications. Pharm Biol. 2012;50(11):1384–90. https://doi.org/10.3109/13880209.2012.675342

. de Freitas MM, Fontes PR, Souza PM, William Fagg C, Neves Silva Guerra E, de Medeiros Nóbrega YK, et al. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity. van Berkel WJH, editor. PLOS ONE. 2016;11(9):e0163130. https://doi.org/10.1371/journal.pone.0163130

. Ko H-H, Chiang Y-C, Tsai M-H, Liang C-J, Hsu L-F, Li S-Y, et al. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. J Ethnopharmacol. 2014;151(1):386–93. https://doi.org/10.1016/j.jep.2013.10.054

. Lin F-J, Yen F-L, Chen P-C, Wang M-C, Lin C-N, Lee C-W, et al. HPLC-Fingerprints and Antioxidant Constituents of Phyla nodiflora. Sci World J. 2014;2014:1–8. https://doi.org/10.1155/2014/528653

. Diwakar G, Rana J, Saito L, Vredeveld D, Zemaitis D, Scholten J. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production. Fitoterapia. 2014;97:164–71. https://doi.org/10.1016/j.fitote.2014.05.021

. Mahendra Kumar C, Sathisha UV, Dharmesh S, Rao AGA, Singh SA. Interaction of sesamol (3,4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie. 2011;93(3):562–9. https://doi.org/10.1016/j.biochi.2010.11.014

. Srisayam M, Weerapreeyakul N, Barusrux S, Kanokmedhakul K. Antioxidant, antimelanogenic, and skin-protective effect of sesamol. J Cosmet Sci. 2014;69–79.

. Kim K-N, Yang H-M, Kang S-M, Kim D, Ahn G, Jeon Y-J. 3 Octaphlorethol A isolated from Ishige foliacea inhibits a-MSH-stimulated 4 induced melanogenesis via ERK pathway in B16F10 melanoma cells. 2013;6.

. Shukla S, Park J, Kim D-H, Hong S-Y, Lee JS, Kim M. Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control. 2016;59:854–61. https://doi.org/10.1016/j.foodcont.2015.07.003

. Jiménez Z, Kim Y-J, Mathiyalagan R, Seo K-H, Mohanan P, Ahn J-C, et al. Assessment of radical scavenging, whitening and moisture retention activities of Panax ginseng berry mediated gold nanoparticles as safe and efficient novel cosmetic material. Artif Cells Nanomedicine Biotechnol. 2018;46(2):333–40. https://doi.org/10.1080/21691401.2017.1307216

. Lin VC, Ding H-Y, Tsai P-C, Wu J-Y, Lu Y-H, Chang T-S. In Vitro and in Vivo Melanogenesis Inhibition by Biochanin A from Trifolium pratense. Biosci Biotechnol Biochem. 2011;75(5):914–8. https://doi.org/10.1271/bbb.100878

. Chae J, Subedi L, Jeong M, Park Y, Kim C, Kim H, et al. Gomisin N Inhibits Melanogenesis through Regulating the PI3K/Akt and MAPK/ERK Signaling Pathways in Melanocytes. Int J Mol Sci. 2017;18(2):471. https://doi.org/10.3390/ijms18020471

. Jung HG, Kim HH, Paul S, Jang JY, Cho YH, Kim HJ, et al. Quercetin-3-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells. Saudi J Biol Sci. 2015;22(6):706–13. https://doi.org/10.1016/j.sjbs.2015.03.009

. Goh M-J, Lee H-K, Cheng L, Kong D-Y, Yeon J-H, He Q-Q, et al. Depigmentation Effect of Kadsuralignan F on Melan-A Murine Melanocytes and Human Skin Equivalents. Int J Mol Sci. 2013;14(1):1655–66. https://doi.org/10.3390/ijms14011655

. Liang C-H, Chou T-H, Tseng Y-P, Ding H-Y. trans-Caffeic Acid Stearyl Ester from Paeonia suffruticosa Inhibits Melanin Synthesis by cAMP-Mediating Down-Regulation of α-Melanocyte-Stimulating Hormone-Stimulated Melanogenesis Signaling Pathway in B16 Cells. Biological and Pharmaceutical Bulletin. 2012;35(12):2198–203. https://doi.org/10.1248/bpb.b12-00619

. Chou T-H, Ding H-Y, Lin R-J, Liang J-Y, Liang C-H. Inhibition of Melanogenesis and Oxidation by Protocatechuic Acid from Origanum vulgare (Oregano). J Nat Prod. 2010;73(11):1767–74. https://doi.org/10.1021/np100281g

. Wu X, Yin S, Zhong J, Ding W, Wan J, Xie Z. Mushroom tyrosinase inhibitors from Aloe barbadensis Miller. Fitoterapia. 2012;83(8):1706–11. https://doi.org/10.1016/j.fitote.2012.09.028

. Lin D, Wang S, Song T, Hsieh C, Tsai M. Safety and efficacy of tyrosinase inhibition of Paeonia suffruticosa Andrews extracts on human melanoma cells. J Cosmet Dermatol. 2019;18(6):1921–9. https://doi.org/10.1111/jocd.12902

. Momtaz S, Mapunya BM, Houghton PJ, Edgerly C, Hussein A, Naidoo S, et al. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J Ethnopharmacol. 2008;119(3):507–12. https://doi.org/10.1016/j.jep.2008.06.006

. Chang C-T, Chang W-L, Hsu J-C, Shih Y, Chou S-T. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot Stud. 2013;54(1):10. https://doi.org/10.1186/1999-3110-54-10

. Lee S-C, Chen C-H, Yu C-W, Chen HL, Huang W-T, Chang Y-S, et al. Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression. J Biosci Bioeng. 2016;122(3):263–9. https://doi.org/10.1016/j.jbiosc.2016.03.002

. Ma H, Xu J, DaSilva NA, Wang L, Wei Z, Guo L, et al. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells. Arch Dermatol Res. 2017;309(4):265–74. https://doi.org/10.1007/s00403-017-1728-1

. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan stephan, Kluger HM, et al. Expression Profiling Reveals Novel Pathways in the Transformation of Melanocytes to Melanomas. CANCER Res. 2014;

. Christopher Gabbott, Tao Sun. Comparison of Human Dermal Fibroblasts and HaCat Cells Cultured in Medium with or without Serum via a Generic Tissue Engineering Research Platform. Int J Mol Sci. 2018;19(2):388. https://doi.org/10.3390/ijms19020388

. Wilson VG. Growth and Differentiation of HaCaT Keratinocytes. In: Turksen K, editor. Epidermal Cells. New York, NY: Springer New York; 2013. p. 33–41. (Methods in Molecular Biology; vol. 1195). https://doi.org/10.1007/7651_2013_42

. ATCC. Hs68. 2020; Available from: https://www.atcc.org/products/all/CRL-1635.aspx#

. Patton EE, Mathers ME, Schartl M. Generating and Analyzing Fish Models of Melanoma. In: Methods in Cell Biology. Elsevier; 2011. p. 339–66. https://doi.org/10.1016/B978-0-12-381320-6.00014-X

. MatTek. MelanoDerm [Internet]. 2021. Available from: https://www.mattek.com/products/melanoderm/

. Zhang Z, Michniak-Kohn BB. Tissue Engineered Human Skin Equivalents. Pharmaceutics. 2012;4(1):26–41. https://doi.org/10.3390/pharmaceutics4010026

. Merck. Human Epidermal Melanocytes: HEM, adult [Internet]. 2021. Available from: https://www.sigmaaldrich.com/catalog/product/sigma/10405a?lang=en&region=ID&gclid=EAIaIQobChMIuIKRyezS7gIVxjUrCh1X_QHVEAAYASAAEgJL6_D_BwE

. Picot J. Human Cell Cultur Protocol. 2005. (second edition).

. PromoCell. Normal Human Epidermal Melanocytes (NHEM) [Internet]. 2021. Available from: https://www.promocell.com/product/normal-human-epidermal-melanocytes-

nhem/#:~:text=Primary%20Normal%20Human%20Epidermal%20Melanocytes,the%20keratinocytes%20in%20suprabasal%20layers.

. ScienCell. Human Epidermal Melanocytes-medium [Internet]. 2020. Available from: https://www.sciencellonline.com/human-epidermal-melanocytes-medium.html

. ATCC. B16-F0 [Internet]. 2020. Available from: https://www.atcc.org/products/all/CRL-6322.aspx

. Kim K-N, Yang H-M, Kang S-M, Kim D, Ahn G, Jeon Y-J. Octaphlorethol A isolated from Ishige foliacea inhibits α-MSH-stimulated induced melanogenesis via ERK pathway in B16F10 melanoma cells. Food Chem Toxicol. 2013;59:521–6. https://doi.org/10.1016/j.fct.2013.06.031




DOI: https://doi.org/10.25077/jsfk.8.2.116-127.2021

Article Metrics

Abstract view : 891 times
PDF view/download : 420 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.