Review: Zebrafish (Danio Rerio) Sebagai Model Obesitas dan Diabetes Melitus Tipe 2

Mira Hardianti, Ari Yuniarto, Patonah Hasimun

Abstrak


Zebrafish (Danio rerio) yang sebelumnya disebut Brachydanio rerio merupakan spesies ikan air tawar tropis yang berukuran kecil yang berasal dari Asia Selatan dan Sungai Gangga di India. Zebrafish bisa diaplikasikan pada model obesitas dan diabetes melitus tipe 2 (DMT2). Obesitas merupakan pemicu terjadinya DMT2. Tujuan dari review artikel ini dapat memberikan informasi dan meningkatkan pemahaman pembaca bahwa zebrafish merupakan model yang ideal untuk obesitas dan DMT2. Metode penulisan review artikel ini dilakukan dengan penelusuran artikel ilmiah terpublikasi bertaraf nasional dan internasional dengan menggunakan kata kunci berupa “Obesity, zebrafish, model”, “Hyperglycemia, zebrafish, model” atau “zebrafish for hyperglycemia” dan “Diabetes melitus type 2, zebrafish, model”. Zebrafish model obesitas dan DMT2 yang diinduksi makanan dan obat menunjukkan keunggulan menjadi obesitas seperti pada manusia dan mamalia lain. Selain itu, zebrafish yang diinduksi dengan metode perendaman glukosa diperoleh hasil meningkatnya kadar glukosa darah dan gangguan respon terhadap insulin eksogen. Pemberian alternatif terapi dari bahan alam seperti GTE, palmaria mollis, diosgenin, bubuk kayu manis pada zebrafish memberikan hasil yang cukup baik sehingga bisa dipertimbangkan sebagai alternatif model hewan lain.


Kata Kunci


DM tipe 2; model; obesitas; zebrafish (danio rerio).

Teks Lengkap:

PDF

Referensi


. Zang L, Maddison LA, Chen W. Zebrafish as a model for obesity and diabetes. Front Cell Dev Biol. 2018;6(AUG):1–13. https://doi.org/10.3389/fcell.2018.00091

. Baynest HW. Classification, Pathophysiology, Diagnosis and Management of Diabetes Mellitus. J Diabetes Metab. 2015;06(05):1–10. https://doi.org/10.4172/2155-6156.1000541

. WHO. Diakses dari : https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight, pada tanggal 20 November 2020, pukul 17.00 WIB; 2020.

. UNICEF EA and P. REGIONAL OVERVIEW OF FOOD SECURITY AND NUTRITION [Internet]. 2019. 12–16 hal. Tersedia pada: https://www.unicef.org/eap/reports/asia-and-pacific-regional-overview-food-security-and-nutrition-0

. Riskesdas. Hasil Utama Riset Kesehatan Dasar (RISKESDAS) [Internet]. 2018. 1–200 hal. https://doi.org/10.1088/1751-8113/44/8/085201

. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. https://doi.org/10.1038/nrendo.2017.151

. WHO. Diakses dari : https://www.who.int/westernpacific/health-topics/obesity, pada tanggal 02 Desember 2020, pukul 08.00 WIB; 2020.

. Andersen CJ, Murphy KE, Fernandez ML. Impact of obesity and metabolic syndrome on immunity. Adv Nutr. 2016;7(1):66–75. https://doi.org/10.3945/an.115.010207

. Heckler K, Kroll J. Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci. 2017;18(9):1–9. https://doi.org/10.3390/ijms18092002

. Yuniarto A, Sukandar EY, Fidrianny I, Crystalia AA, Adnyana IK. Zebra fish model of obesity: Relevance to metabolic syndrome. Int J Green Pharm. 2019;13(2):175–9. https://doi.org/http://dx.doi.org/10.22377/ijgp.v13i2.2499

. Schindler C, Engeli S. Modern pharmacological treatment of obese patients. Ther Adv Endocrinol Metab. 2020;1–19. https://doi.org/10.1177/2042018819897527

. Wróbel MP, Marek B, Kajdaniuk D, Rokicka D, Szymborska-Kajanek A, Strojek K. Metformin — a new old drug. Endokrynol Pol. 2017;68(4):482–96. https://doi.org/10.5603/ep.2017.0050

. Vieira R, Souto SB, Elena S, Ana L, Severino P, Jose S, et al. Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome — Review of Classical and New Compounds : Part-I. Pharmaceuticals. 2019; https://doi.org/https://dx.doi.org/10.3390%2Fph12040152

. Marín-peñalver JJ, Martín-timón I, Sevillano-collantes C, Cañizo-gómez FJ, Marín-peñalver JJ, Martín-timón I, et al. Update on the treatment of type 2 diabetes mellitus. 2016;7(17):354–95. https://doi.org/10.4239/wjd.v7.i17.354

. Diani A, Pulungan AB. Tata laksana Metformin Diabetes Mellitus Tipe 2 pada Anak Dibandingkan dengan obat Anti Diabetes Oral yang lain. Sari Pediatr. 2016;11(6):395. https://doi.org/10.14238/sp11.6.2010.395-400

. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z

. Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother. 2018;106(July):1227–35. https://doi.org/10.1016/j.biopha.2018.07.085

. Benchoula K, Khatib A, Quzwain FMC, Che Mohamad CA, Wan Sulaiman WMA, Wahab RA, et al. Optimization of hyperglycemic induction in zebrafish and evaluation of its blood glucose level and metabolite fingerprint treated with psychotria malayana Jack Leaf extract. Molecules. 2019;24(8). https://doi.org/10.3390/molecules24081506

. Fernandes MR, de Lima NV, Rezende KS, Santos ICM, Silva IS, Guimarães R de CA. Animal models of obesity in rodents. An integrative review. Acta Cir Bras. 2016;31(12):840–4. https://doi.org/10.1590/S0102-865020160120000010

. Husna F, Suyatna FD, Arozal W, Purwaningsih EH. Model Hewan Coba pada Penelitian Diabetes. Pharm Sci Res. 2019;6(3):131–41. https://doi.org/10.7454/psr.v6i3.4531

. Meyers JR. Zebrafish: Development of a Vertebrate Model Organism. Curr Protoc Essent Lab Tech. 2018;16(1):1–26. https://doi.org/10.1002/cpet.19

. Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q, et al. The use of zebrafish (Danio rerio) as biomedical models. Anim Front. 2019;9(3):68–77. https://doi.org/10.1093/af/vfz020

. Reed B, Jennings M. Guidance on the housingand care of Zebrafish. Res Anim Dep. 2011;1–64. Tersedia pada: papers2://publication/uuid/4F68076E-5B1F-4412-9366-E2017C6ADCD0

. Holtzman NG, Kathryn Iovine M, Liang JO, Morris J. Learning to fish with genetics: A primer on the vertebrate model Danio rerio. Genetics. 2016;203(3):1069–89. https://doi.org/10.1534/genetics.116.190843

. Yuniarto A, Sukandar EY, Fidrianny I, Adnyana IK. Aplikasi Zebrafish (Danio rerio) pada Beberapa Model Penyakit Eksperimental. Media Pharm Indones. 2017;1(3):116. https://doi.org/10.24123/mpi.v1i3.215

. White R, Rose K, Zon L. Zebrafish cancer: The state of the art and the path forward. Nat Rev Cancer. 2013;13(9):624–36. https://doi.org/10.1038/nrc3589

. William W. Ikan zebra ( Danio rerio ) dan Kegunaanya dalam Penelitian Fisiologi. J Kedokt Meditek. 2017;23(64):41–6.

. Elemans LMH, Cervera IP, Riley SE, Wafer R, Fong R, Tandon P, et al. Quantitative analyses of adiposity dynamics in zebrafish. Adipocyte. 2019;8(1):330–8. https://doi.org/10.1080/21623945.2019.1648175

. Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ. 2018;60(6):393–9. https://doi.org/10.1111/dgd.12565

. McCluskey BM, Postlethwait JH. Phylogeny of zebrafish, a “model species,” within Danio, a “model genus.” Mol Biol Evol. 2015;32(3):635–52. https://doi.org/10.1093/molbev/msu325

. Connaughton VP, Baker C, Fonde L, Gerardi E, Slack C. Alternate Immersion in an External Glucose Solution Differentially Affects Blood Sugar Values in Older Versus Younger Zebrafish Adults. Zebrafish. 2016;13(2):87–94. https://doi.org/10.1089/zeb.2015.1155

. Lidster K, Readman GD, Prescott MJ, Owen SF. International survey on the use and welfare of zebrafish Danio rerio in research. J Fish Biol. 2017;90(5):1891–905. https://doi.org/10.1111/jfb.13278

. Faillaci F, Milosa F, Critelli RM, Turola E, Schepis F, Villa E. Obese zebrafish: A small fish for a major human health condition. Anim Model Exp Med. 2018;1(4):255–65. https://doi.org/10.1002/ame2.12042

. Vargas R. Childhood obesity and the zebrafish as a model for the study of diet-induced obesity and its impact in cardiovascular system in adulthood - An overview. Trends Med. 2018;18(3):1–4. https://doi.org/10.15761/tim.1000142

. Zang L, Shimada Y, Nakayama H, Kim Y, Chu DC, Juneja LR, et al. RNA-seq based transcriptome analysis of the anti-obesity effect of green tea extract using zebrafish obesity models. Molecules. 2019;24(18):1–11. https://doi.org/10.3390/molecules24183256

. Nakayama H, Shimada Y, Zang L, Terasawa M, Nishiura K, Matsuda K, et al. Novel anti-obesity properties of palmaria mollis in zebrafish and mouse models. Nutrients. 2018;10(10):1–16. https://doi.org/10.3390/nu10101401

. Zang L, Shimada Y, Tanaka T, Nishimura N. Rhamnan sulphate from Monostroma nitidum attenuates hepatic steatosis by suppressing lipogenesis in a diet-induced obesity zebrafish model. J Funct Foods. 2015;17:364–70. https://doi.org/10.1016/j.jff.2015.05.041

. Kaur N, Chugh H, Tomar V, Sakharkar MK, Dass SK, Chandra R. Cinnamon attenuates adiposity and affects the expression of metabolic genes in Diet-Induced obesity model of zebrafish. Artif Cells, Nanomedicine Biotechnol. 2019;47(1):2930–9. https://doi.org/10.1080/21691401.2019.1641509

. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iran J Basic Med Sci. 2016;19(6):1258–70. Tersedia pada: http://dx.doi.org/10.22038/ijbms.2016.7906

. Khanal P, Patil BM, Unger BS. Zebrafish shares common metabolic pathways with mammalian olanzapine-induced obesity. Futur J Pharm Sci. 2020;6(1). https://doi.org/10.1186/s43094-020-00049-7

. Den Broeder MJ, Kopylova VA, Kamminga LM, Legler J. Zebrafish as a Model to Study the Role of Peroxisome Proliferating-Activated Receptors in Adipogenesis and Obesity. PPAR Res. 2015;2015(1). https://doi.org/10.1155/2015/358029

. Orsso CE, Colin-Ramirez E, Field CJ, Madsen KL, Prado CM, Haqq AM. Adipose tissue development and expansion from the womb to adolescence: An overview. Nutrients. 2020;12(9):1–21. https://doi.org/10.3390/nu12092735

. Meguro S, Hasumura T, Hase T. Body Fat Accumulation in Zebrafish Is Induced by a Diet Rich in Fat and Reduced by Supplementation with Green Tea Extract. PLoS One. 2015;1–12. https://doi.org/10.1371/journal.pone.0120142

. Kimura Y, Yamada A, Takabayashi Y, Tsubota T, Kasuga H. Development of a new diet-induced obesity (DIO) model using wistar lean rats. Exp Anim. 2018;67(2):155–61. https://doi.org/10.1538/expanim.17-0079

. Tabassum N, Tai H, Jung DW, Williams DR. Fishing for Nature’s Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products. Evidence-based Complement Altern Med. 2015;2015. https://doi.org/10.1155/2015/287847

. Viana MV, Moraes RB, Fabbrin AR, Santos MF, Gerchman F. Avaliação e tratamento da hiperglicemia em pacientes graves. Rev Bras Ter Intensiva. 2014;26(1):71–6. https://doi.org/10.5935/0103-507X.20140011

. Yeni CM, Talima A, Milzam H. Description of Gestational Mellitus Diabetes in the General Hospital Dr. Zainoel Abidin Banda Aceh in 2018. Budapest Int Res Exact Sci J. 2020;2(2):236–40. https://doi.org/10.33258/birex.v2i2.979

. Zang L, Shimada Y, Nakayama H, Chen W, Okamoto A, Koide H, et al. Therapeutic silencing of centromere protein X ameliorates hyperglycemia in zebrafish and mouse models of type 2 diabetes mellitus. Front Genet. 2019;10(JUL):1–11. https://doi.org/10.3389/fgene.2019.00693

. Oyelaja-Akinsipo OB, Dare EO, Katare DP. Protective role of diosgenin against hyperglycaemia-mediated cerebral ischemic brain injury in zebrafish model of type II diabetes mellitus. Heliyon. 2020;6(1):e03296. https://doi.org/10.1016/j.heliyon.2020.e03296

. Okazaki F, Zang L, Nakayama H, Chen Z, Gao ZJ, Chiba H, et al. Microbiome Alteration in Type 2 Diabetes Mellitus Model of Zebrafish. Sci Rep. 2019;9(1):1–10. https://doi.org/10.1038/s41598-018-37242-x

. Zang L, Shimada Y, Nishimura N. Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus. Sci Rep. 2017;7(1):1–11. https://doi.org/10.1038/s41598-017-01432-w

. Kesavadev J, Jawad F, Deeb A, Coetzee A, Ansari MAJ, Shrestha D. The Diabetes Textbook. Diabetes Textb. 2019; https://doi.org/10.1007/978-3-030-11815-0

. Hernández RJ, Mahmoud AM, Königsberg M, López NE, Guerrero D. Biomedicine & Pharmacotherapy Obesity : Pathophysiology , monosodium glutamate-induced model and anti- obesity medicinal plants. Biomed Pharmacother. 2019;111(October 2018):503–16. https://doi.org/10.1016/j.biopha.2018.12.108

. Mohammadi H, Manouchehri H, Changizi R, Bootorabi F, Khorramizadeh MR. Concurrent metformin and silibinin therapy in diabetes: assessments in zebrafish (Danio rerio) animal model. J Diabetes Metab Disord. 2020; https://doi.org/10.1007/s40200-020-00637-7

. Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep. 2018;8(1):1–17. https://doi.org/10.1038/s41598-017-18896-5

. Gan Q, Wang J, Huang Q, Hu J, Lou G, Xiong H, et al. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol. 2020;198(December 2019). https://doi.org/10.1016/j.jsbmb.2019.105575

. Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S. A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Mater Sci Eng C. 2019;97(April 2018):397–405. https://doi.org/10.1016/j.msec.2018.12.058




DOI: https://doi.org/10.25077/jsfk.8.2.69-79.2021

Article Metrics

Abstract view : 899 times
PDF view/download : 698 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.