Pengaruh Jumlah Polimer terhadap Karakteristik Fisik dan Pelepasan Nanopartikel Fraksi Diterpen Lakton Sambiloto - Kitosan

Retno Sari, Abhimata Paramanandana, Dewi Isadiartuti, Annisa Maulidia Rahayyu

Abstrak


Fraksi diterpen lakton dari Andrographis paniculata Nees (sambiloto) (FDTLS) memiliki kandungan utama andrografolid. andrografolid diketahui memiliki bioavailabilitas buruk, bersifat sangat lipofilik, dan memiliki kelarutan yang rendah di dalam air. Penjebakan bahan sukar larut ke dalam polimer hidrofilik seperti kitosan dapat memperbaiki disolusi yang selanjutnya akan meningkatkan bioavailabilitas dan efektivitasnya. Tujuan penelitian ini adalah untuk meningkatkan disolusi serta mengetahui pengaruh jumlah kitosan terhadap karakteristik fisik, efisiensi penjebakan dan pelepasan FDTLS dari nanopartikel FDTLS-kitosan. Nanopartikel dibuat dengan metode gelasi ionik-semprot kering menggunakan tripolifosfat sebagai penyambung silang. Nanopartikel dibuat dengan rasio FDTLS-kitosan yang berbeda, yaitu 1:2 (FK1), 1:2,5 (FK2) dan 1:3 (FK3). Evaluasi yang dilakukan meliputi morfologi, pemeriksaan differential thermal analysis (DTA), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), efisiensi penjebakan, dan uji pelepasan. Nanopartikel yang dihasilkan berbentuk sferis dan FK2 mempunyai permukaan paling halus dengan entalpi paling tinggi. Difraktogram nanopartikel FDTLS-kitosan menunjukkan perubahan kristalinitas menjadi lebih amorf. Efisiensi penjerapan FDTLS dalam nanopartikel kitosan sebesar 29,01-32,69%. Hasil uji pelepasan nanopartikel menunjukkan peningkatan kecepatan FDTLS terlarut sebesar 1,6 kali dibandingkan dengan substansi FDTLS. Dari hasil penelitian dapat disimpulkan bahwa pembentukan nanopartikel dengan polimer kitosan dengan metode gelasi ionik-semprot kering dapat meningkatkan jumlah FDTLS terlarut.

Kata Kunci


kitosan; Andrographis paniculata; fraksi diterpen lakton sambiloto; ionik gelasi; nanopartikel; pelepasan obat.

Teks Lengkap:

PDF

Referensi


Niranjan A, Tewari SK, Lehri A. Biological activities of Kalmegh (Andrographis paniculata Nees) and its active principles-A review. IJNPR. 2010;1(2):125–35.

Mishra SK, Sangwan NS, Sangwan RS. Andrographis paniculata (Kalmegh): A review. Phcog Rev. 2007;1(2):283–98.

Jadhao M, Wankhade V. Estimation and Quantification of Andrographolide in Herbal Powder and Polyherbal Asava by HPTLC. Asian Journal of Research in Chemistry. 2011;4(1):68–70.

Hu J, Johnston KP, Iii ROW. Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs. Drug Dev Ind Pharm. 2004;30(3):233–45. https://doi.org/10.1081/DDC-120030422

Couvreur P. Nanoparticles in drug delivery: Past, present and future. Adv Drug Deliv Rev. 2013;65(1):21–3. https://doi.org/10.1016/j.addr.2012.04.010

Mohanraj VJ, Chen Y. Nanoparticles – A Review. Trop J Pham Res. 2006;5(1):561–73. https://doi.org/10.4314/tjpr.v5i1.14634

Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J Food Drug Anal. 2015;23(4):619–29. https://doi.org/10.1016/j.jfda.2014.10.008

Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–86. https://doi.org/10.1016/j.ijbiomac.2017.12.078

Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274(1–2):1–33. https://doi.org/10.1016/j.ijpharm.2003.12.026

Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloid Surface B. 2012;90:21–7. https://doi.org/10.1016/j.colsurfb.2011.09.042

Tiyaboonchai W. Chitosan Nanoparticles : A Promising System for Drug Delivery. NUJST. 2003;11(3):51–66. https://doi.org/10.1248/cpb.58.1423

Naskar S, Koutsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target. 2019;27(4):379–93. https://doi.org/10.1080/1061186X.2018.1512112

Shu XZ, Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm. 2002;54(2):235–43. https://doi.org/10.1016/s0939-6411(02)00052-8

Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm. 2002;249(1):165–74. https://doi.org/https://doi.org/10.1016/S0378-5173(02)00487-8

Estevinho BN, Rocha F, Santos L, Alves A. Microencapsulation with chitosan by spray drying for industry applications - A review. Trends Food Sci Tech. 2013;31(2):138–55. https://doi.org/10.1016/j.tifs.2013.04.001

Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

Deshmukh R, Wagh P, Naik J. Solvent evaporation and spray drying technique for micro- and nanospheres / particles preparation : A review. Dry Technol. 2016;34(15):1758–72. https://doi.org/10.1080/07373937.2016.1232271

Deore B V, Mahajan HS, Deore U V. Development and characterization of sustained release microspheres by quasi emulsion solvent diffusion method. Int J Chemtech Res. 2009;1(3):634–42.

Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech. 2006;7(2):E138–43. https://doi.org/10.1208/pt070250




DOI: https://doi.org/10.25077/jsfk.7.2.99-106.2020

Article Metrics

Abstract view : 674 times
PDF view/download : 264 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

      

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.