Peningkatan Laju Disolusi Piperine dengan Pembentukan Multikomponen Kristal Menggunakan Asam Nikotinat

Yeni Novita Sari, Erizal Zaini, Friardi Ismed

Abstrak


Tujuan penelitian ini adalah untuk meningkatkan laju disolusi piperin dengan pembentukan multikomponen kristal piperin dan asam nikotinat (1:1) dengan metode pelarutan menggunakan pelarut etanol. Multikomponen kristal dikarakterisasi sifat padatannya dengan Difraksi sinar-X, analisa termal Differential Scaning Calorimetry (DSC), spektroskopi FT-IR, analisa mikroskopik Scanning Electron Microscopy (SEM), uji kelarutan dan  profil laju disolusi menggunakan  Aparatus USP 2. Dari penelitian serbuk multikomponen kristal piperin-asam nikotinat diperoleh hasil  pola difraksi sinar-X menunjukkan puncak difraksi yang baru, analisa termal termogram DSC menunjukkan puncak endotermik pada 126,117 ºC, spektrum FTIR terdapat bilangan gelombang 3349,94 cm-1, analisa mikroskopik SEM menunjukkan sudah terbentuk agregat, uji kelarutan menunjukkan peningkatan 1,5 kali lipat dibandingkan piperin murni, profil laju disolusi piperin menunjukkan peningkatan secara signifikan dibandingkan piperin murni yaitu sekitar 2,5 kali lipat. Secara umum preparasi multikomponen kristal piperin-asam nikotinat dapat meningkatkan laju disolusi piperin


Kata Kunci


multikomponen kristal; piperin; asam nikotinat; laju disolusi

Teks Lengkap:

PDF

Referensi


Peter, K.V. Handbook of Herbs and Spices. Woodhead Publishing Limited and CRC Press. 2001.

Randhawa GK, Kullar JS, Rajkumar. Bioenhancers from Mother Nature and their applicability in modern medicine. International journal of applied and basic medical research. 20011; 1(1): 5-10.

Maitra, J & Shilpi. Antibacterial Activity Of Piperine Extracted From Piper Nigrum Against E.Coli And Bacilus Subtilis, European Journal Of Biomedical and Pharmaceutical Sciences. 2016; 3 (6): 497-500.

Kim, S H and Lee, Y C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. Journal of Pharmacy and Pharmacology. 2009; 61: 353–359.

Vijayakumar, R S., Surya D & Nalini, N. Antioxidant efficacy of black pepper (Pipernigrum L.) and piperine in rats with high fat diet induced oxidative stress, Redox Report. 2004; 9 (2): 105-110

Mujumdar AM, Dhuley JN, Deshmukh VK. Antiinflammatory activity of piperine. Jpn J Med Sci Biol. 1990; 43: 95–100.

Li, S., Wang, C., Wang, M., Li, W., Matsumoto, K., Tang Y. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms, Life Sciences. 2007; 80 : 1373–1381.

Vasavirama, K., & Upender, M. Piperine: A Valuable Alkaloid From Piper Species, International Journal of Pharmacy and Pharmaceutical Sciences. 2014; 6 : 4.

Butt, M, S., Pasha, I., Sultan, M, T., Randhawa, M, A., Seed, F and Ahmed, W. Black Pepper and Health Claims : A Comprehennsive Treatise. Critical Reviews In Food Science and Nutrition. 2013; 53 : 875-886

Wadhwa, S., Singhal, S, and Rawat,S. Bioavailability Enhancement by Piperine: A Review. Asian Journal of Biomedical and Pharmaceutical Sciences. 2014; 04 (36) : 1-8.

Veerareddy P, Vobalaboina V, Nahid A. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Die Pharmazie-Int J Pharmac Sci. 2004; 59:194–7.

Thenmozhi, K., & Yoo, Y. J. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Development and Industrial Pharmacy. 2017; 43(9) : 1501–1509.

Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y., & Kanamoto, I. Characterization of the Dissolution Behavior of Piperine/Cyclodextrins Inclusion Complexes. AAPS PharmSciTec. 2017; 19(2): 923–933.

Bhalekar, M. R., Madgulkar, A. R., Desale, P. S., & Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Development and Industrial Pharmacy. 2017; 43(6): 1003–1010.

Putra OD, Furuishi T, Yonemochi E, Terada K, Uekusa H. Drug-drug multicomponent crystals as an effective technique to overcome weaknesses in parent drugs. Cryst Growth. 2016;16 (7): 3577-3581.

Ainurofiq A, Mauludin R, Mudhakir D. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018; 111: 65 -72.

Sekhon, B S. Pharmaceutical co-crystals - an update. International Bulletin of Drug Research. 2012; 1(2): 24-39.

Good, D. J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth. 2009; 9: 2252−2264.

Zaini, E., Halim, A., Soewandhi, Sundani N., Setyawan, D. Peningkatan Laju Pelarutan Trimetoprim Melalui Metode Ko-Kristalisasi Dengan Nikotinamida. Jurnal Farmasi Indonesia. 2011; 5 (4): 205 – 212.

Jingyan, S., Jie, L., Yun, D., Ling, H., Xi, Y., Zhiyong, W., Yuwen, L., Cunxin. W. Investigation Of Thermal Behavior Of Nicotinic Acid. Journal of Thermal Analysis and Calorimetry. 2008; 93 (2): 403–409.

Pereira-da-Silva,M, d, A., and Ferri, F, A. 1- Scanning Electron Microscopy, Nanocharacterization Techniques, A volume in micro and nano Technologies. 2017; 1-35.

Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst Growth. 2016; 16(6): 3237-3243.

Putra O, Yonemochi E, Uekusa H. Isostructural multicomponent gliclazide crystals with improved solubility. Cryst Growth. 2016; 16(11): 6568-6573

Katritzky AR, Jain R, Lomaka A, Petrukhin R, Maran U, Karelson M. Perspective on the relationship between melting points and chemical structure. Cryst Growth. 2001;1(4):261-265.




DOI: https://doi.org/10.25077/jsfk.6.2.180-185.2019

Article Metrics

Abstract view : 292 times
PDF view/download : 647 times



Jurnal Sains Farmasi & Klinis (J Sains Farm Klin) | p-ISSN: 2407-7062 | e-ISSN: 2442-5435

Diterbitkan oleh Fakultas Farmasi Universitas Andalas bekerjasama dengan Ikatan Apoteker Indonesia - Daerah Sumatera Barat 

 Google Scholar         

 JSFK is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.